The prevention of hot cracking formation is of utmost importance in the production of the new Ni-Co based superalloys through the utilization of the electron beam smelting layered solidification technique(EBSL),as it ...The prevention of hot cracking formation is of utmost importance in the production of the new Ni-Co based superalloys through the utilization of the electron beam smelting layered solidification technique(EBSL),as it ensures exceptional homogeneity and dependable consistency of the specimens.In contrast to previous studies that focused on minimizing the liquid film and solidification range,our methodology adopts a distinct approach.In this research,a novel methodology was employed to mitigate internal stresses through the implementation of equiaxed grain layers via an alternately reduced cooling method.This ultimately resulted in the elimination of hot cracking.To be more specific,the transition from a columnar to an equiaxed structure was observed during the layer-by-layer construction process in the fabrication of the new Ni-Co based superalloy in EBSL.The EBSL-Ni-Co superalloy,when subjected to the alternating reduction cooling method,exhibited an internal stress of 49 MPa.This value represents a significant reduction of 83.8%compared to the internal stress observed when employing the linear reduction cooling method.Additionally,the solvus temperature of theγ-γ’eutectic phases in EBSL-Ni-Co superalloys produced by the alternating reduction cooling method is significantly higher.Intriguingly,the Nth layer of the EBSL-Ni-Co based superalloys produced by EBSL simultaneously heats treated with the preceding layers.And the low melting point phase gradually dissolved back into the matrix.The implementation of an alternating reduced cooling method successfully mitigated the formation of the liquid film in theγ-γ’eutectic phase and the buildup of internal stresses in the EBSL-Ni-Co superalloy during its manufacturing process.These discoveries open up a novel preparation procedure pathway for the manufacture of crack-free superalloys with superior mechanical characteristics using EBSL.展开更多
Volatile organic compounds(VOCs) are crucial to control air pollution in major Chinese cities since VOCs are the dominant factor influencing ambient ozone level, and also an important precursor of secondary organic ...Volatile organic compounds(VOCs) are crucial to control air pollution in major Chinese cities since VOCs are the dominant factor influencing ambient ozone level, and also an important precursor of secondary organic aerosols. Vehicular evaporative emissions have become a major and growing source of VOC emissions in China. This study consists of lab tests, technology evaluation, emissions modeling, policy projections and cost-benefit analysis to draw a roadmap for China for controlling vehicular evaporative emissions. The analysis suggests that evaporative VOC emissions from China's light-duty gasoline vehicles were approximately 185,000 ton in 2010 and would peak at 1,200,000 ton in 2040 without control. The current control strategy implemented in China, as shown in business as usual(BAU) scenario, will barely reduce the long-term growth in emissions. Even if Stage II gasoline station vapor control policies were extended national wide(BAU + extended Stage II), there would still be over 400,000 ton fuel loss in 2050. In contrast, the implementation of on-board refueling vapor recovery(ORVR) on new cars could reduce 97.5% of evaporative VOCs by 2050(BAU + ORVR/BAU + delayed ORVR). According to the results, a combined Stage II and ORVR program is a comprehensive solution that provides both short-term and long-term benefits. The net cost to achieve the optimal total evaporative VOC control is approximately 62 billion CNY in 2025 and 149 billion CNY in 2050.展开更多
The new Ni-Co-based superalloy featuring a"fusion structure"was produced utilizing electron beam smelting layered solidification technology(EBSL).Experimental examination of hot compression deformation with ...The new Ni-Co-based superalloy featuring a"fusion structure"was produced utilizing electron beam smelting layered solidification technology(EBSL).Experimental examination of hot compression deformation with varied settings for EBSL and conventional duplex process melting Ni-Co superalloys was performed.As per the study,EBSL-Ni-Co superalloys exhibited enhanced recrystallization susceptibility during hot deformation.Furthermore,elevating deformation temperature,lowering strain rate,and augmenting strain collectively contribute to enlarging the volume fraction of dynamically recrystallized grains.Aberrant growth of grains occurred when the deformation temperature equaledγ′sub-solvus temperature and the strain rate was slower.Moreover,exceeding theγ′solvus temperature during deformation significantly increases the particle size of dynamic recrystallization(DRX)grains.Theγ′phase can effectively modulate the DRX grain size through the pegging effect.Additionally,it was revealed that the presence of the fusion structure aids in the generation of continuous dynamic recrystallization,discontinuous dynamic recrystallization,and twinning-induced dynamic recrystallization while the alloy undergoes hot deformation.This mechanism promotes DRX granule formation and permits complete recrystallization.Ultimately,the fusion structure was identified as playing a catalytic role in the dynamic recrystallization process of the new Ni-Co superalloy.展开更多
The chemical characteristics of fine particulate matter (PM2.5) emitted from commercial cooking were explored in this study. Three typical commercial restau- rants in Shanghai, i.e., a Shanghai-style one (SHS), a ...The chemical characteristics of fine particulate matter (PM2.5) emitted from commercial cooking were explored in this study. Three typical commercial restau- rants in Shanghai, i.e., a Shanghai-style one (SHS), a Sichuan-style one (SCS) and an Italian-style one (ITS), were selected to conduct PM2.5 sampling. Particulate organic matter (POM) was found to be the predominant contributor to cooking-related PM2.5 mass in all the tested restaurants, with a proportion of 69.1% to 77.1%. Specifically, 80 trace organic compounds were identified and quantified by gas chromatography/mass spectrometry (GC/MS), which accounted for 3.8%-6.5% of the total PM2.5 mass. Among the quantified organic compounds, unsaturated fatty acids had the highest concentration, followed by saturated fatty acids. Comparatively, the impacts of other kinds of organic compounds were much smaller. Oleic acid was the most abundant single species in both SCS and ITS. However, in the case of SHS, linoleic acid was the richest one. ITS produced a much larger mass fraction of most organic species in POM than the two Chinese cooking styles except for monosaccharide anhy-drides and sterols. The results of this study could be utilized to explore the contribution of cooking emissions to PM2.5 pollution and to develop the emission inventory of PM2.5 from cooking, which could then help the policymakers design efficient treatment measures and control strategies on cooking emissions in the future.展开更多
A turbine disk alloy was prepared by electron beam sheet lamination(EBSL),giving a refined microstruc-ture and high purity,and the microstructure-property relationship of this alloy has been developed.The alloy showed...A turbine disk alloy was prepared by electron beam sheet lamination(EBSL),giving a refined microstruc-ture and high purity,and the microstructure-property relationship of this alloy has been developed.The alloy showed an outstanding creep life of 1266.3 h at 953 K/500 MPa.Compared with the conventional vacuum induction melted and vacuum arc re-melted alloy,a smaller dendrite arm spacing of less than 23μm was obtained through the EBSL method,which restricted the formation of large inter-dendritic carbides.As a result,the typical intergranular failure mode was observed in the EBSL alloy,whereas the transgranular fracture mode was dominant in the conventional alloy.The inter-dendritic MC carbides formed from the reverse diffusion of Nb are believed to either impede grain boundary sliding or initi-ate cracks,depending on their size and morphology.The tiny grain boundary precipitates of theδphase in the EBSL alloy could reduce the critical stress for microvoid nucleation to 161.07 MPa by decoher-ing the particle/matrix interface,or allowing vacancy condensation near theδinterface,resulting in the formation of grain boundary microcracks.In the conventional alloy,however,the larger-sized MC car-bides which were formed during the solidification process(0.36 vol.%)nucleated the microcracks within the particles,leading to the transgranular fracture.Furthermore,the results indicated that the nanoscaleγ′andγ″precipitates contributed primarily to strengthening and coordinating intragranular deforma-tion during creep,in which the Orowan mechanism and shearing of a/6<211>partial dislocations and a/2<110>doublets were active forγ′andγ″precipitates,respectively.展开更多
基金support from the National Key Research and Development Program of China(Grant No.2019YFA0705300)the National Natural Science Foundation of China(GrantNo.52004051)the Innovation Team Projectfor Key Fields of Dalian(Grant No.2019RT13).
文摘The prevention of hot cracking formation is of utmost importance in the production of the new Ni-Co based superalloys through the utilization of the electron beam smelting layered solidification technique(EBSL),as it ensures exceptional homogeneity and dependable consistency of the specimens.In contrast to previous studies that focused on minimizing the liquid film and solidification range,our methodology adopts a distinct approach.In this research,a novel methodology was employed to mitigate internal stresses through the implementation of equiaxed grain layers via an alternately reduced cooling method.This ultimately resulted in the elimination of hot cracking.To be more specific,the transition from a columnar to an equiaxed structure was observed during the layer-by-layer construction process in the fabrication of the new Ni-Co based superalloy in EBSL.The EBSL-Ni-Co superalloy,when subjected to the alternating reduction cooling method,exhibited an internal stress of 49 MPa.This value represents a significant reduction of 83.8%compared to the internal stress observed when employing the linear reduction cooling method.Additionally,the solvus temperature of theγ-γ’eutectic phases in EBSL-Ni-Co superalloys produced by the alternating reduction cooling method is significantly higher.Intriguingly,the Nth layer of the EBSL-Ni-Co based superalloys produced by EBSL simultaneously heats treated with the preceding layers.And the low melting point phase gradually dissolved back into the matrix.The implementation of an alternating reduced cooling method successfully mitigated the formation of the liquid film in theγ-γ’eutectic phase and the buildup of internal stresses in the EBSL-Ni-Co superalloy during its manufacturing process.These discoveries open up a novel preparation procedure pathway for the manufacture of crack-free superalloys with superior mechanical characteristics using EBSL.
基金supported by the National Natural Science Foundation of China (No. 71101078)the National High Technology Research and Development Program of China (No. 2013AA065303D)the National Environmental Protection Public Welfare Research Fund (No. 201209003 and No.201409021)
文摘Volatile organic compounds(VOCs) are crucial to control air pollution in major Chinese cities since VOCs are the dominant factor influencing ambient ozone level, and also an important precursor of secondary organic aerosols. Vehicular evaporative emissions have become a major and growing source of VOC emissions in China. This study consists of lab tests, technology evaluation, emissions modeling, policy projections and cost-benefit analysis to draw a roadmap for China for controlling vehicular evaporative emissions. The analysis suggests that evaporative VOC emissions from China's light-duty gasoline vehicles were approximately 185,000 ton in 2010 and would peak at 1,200,000 ton in 2040 without control. The current control strategy implemented in China, as shown in business as usual(BAU) scenario, will barely reduce the long-term growth in emissions. Even if Stage II gasoline station vapor control policies were extended national wide(BAU + extended Stage II), there would still be over 400,000 ton fuel loss in 2050. In contrast, the implementation of on-board refueling vapor recovery(ORVR) on new cars could reduce 97.5% of evaporative VOCs by 2050(BAU + ORVR/BAU + delayed ORVR). According to the results, a combined Stage II and ORVR program is a comprehensive solution that provides both short-term and long-term benefits. The net cost to achieve the optimal total evaporative VOC control is approximately 62 billion CNY in 2025 and 149 billion CNY in 2050.
基金the financial support from the National Key Research and Development Program of China(Grant No.2019YFA0705300)the National Natural Science Foundation of China(Grant No.52004051)the Innovation Team Project for Key Fields of Dalian(Grant No.2019RT13).
文摘The new Ni-Co-based superalloy featuring a"fusion structure"was produced utilizing electron beam smelting layered solidification technology(EBSL).Experimental examination of hot compression deformation with varied settings for EBSL and conventional duplex process melting Ni-Co superalloys was performed.As per the study,EBSL-Ni-Co superalloys exhibited enhanced recrystallization susceptibility during hot deformation.Furthermore,elevating deformation temperature,lowering strain rate,and augmenting strain collectively contribute to enlarging the volume fraction of dynamically recrystallized grains.Aberrant growth of grains occurred when the deformation temperature equaledγ′sub-solvus temperature and the strain rate was slower.Moreover,exceeding theγ′solvus temperature during deformation significantly increases the particle size of dynamic recrystallization(DRX)grains.Theγ′phase can effectively modulate the DRX grain size through the pegging effect.Additionally,it was revealed that the presence of the fusion structure aids in the generation of continuous dynamic recrystallization,discontinuous dynamic recrystallization,and twinning-induced dynamic recrystallization while the alloy undergoes hot deformation.This mechanism promotes DRX granule formation and permits complete recrystallization.Ultimately,the fusion structure was identified as playing a catalytic role in the dynamic recrystallization process of the new Ni-Co superalloy.
文摘The chemical characteristics of fine particulate matter (PM2.5) emitted from commercial cooking were explored in this study. Three typical commercial restau- rants in Shanghai, i.e., a Shanghai-style one (SHS), a Sichuan-style one (SCS) and an Italian-style one (ITS), were selected to conduct PM2.5 sampling. Particulate organic matter (POM) was found to be the predominant contributor to cooking-related PM2.5 mass in all the tested restaurants, with a proportion of 69.1% to 77.1%. Specifically, 80 trace organic compounds were identified and quantified by gas chromatography/mass spectrometry (GC/MS), which accounted for 3.8%-6.5% of the total PM2.5 mass. Among the quantified organic compounds, unsaturated fatty acids had the highest concentration, followed by saturated fatty acids. Comparatively, the impacts of other kinds of organic compounds were much smaller. Oleic acid was the most abundant single species in both SCS and ITS. However, in the case of SHS, linoleic acid was the richest one. ITS produced a much larger mass fraction of most organic species in POM than the two Chinese cooking styles except for monosaccharide anhy-drides and sterols. The results of this study could be utilized to explore the contribution of cooking emissions to PM2.5 pollution and to develop the emission inventory of PM2.5 from cooking, which could then help the policymakers design efficient treatment measures and control strategies on cooking emissions in the future.
基金financially supported by the National Key R&D Program of China (No.2019YFA0705300)the National Natural Science Foundation of China (No.52004051)+1 种基金the Doctoral Start-up Foundation of Liaoning Province (No.2021-BS-069)Support Plan for Innovation Teams in Key Areas of Dalian (No.2019RT13).
文摘A turbine disk alloy was prepared by electron beam sheet lamination(EBSL),giving a refined microstruc-ture and high purity,and the microstructure-property relationship of this alloy has been developed.The alloy showed an outstanding creep life of 1266.3 h at 953 K/500 MPa.Compared with the conventional vacuum induction melted and vacuum arc re-melted alloy,a smaller dendrite arm spacing of less than 23μm was obtained through the EBSL method,which restricted the formation of large inter-dendritic carbides.As a result,the typical intergranular failure mode was observed in the EBSL alloy,whereas the transgranular fracture mode was dominant in the conventional alloy.The inter-dendritic MC carbides formed from the reverse diffusion of Nb are believed to either impede grain boundary sliding or initi-ate cracks,depending on their size and morphology.The tiny grain boundary precipitates of theδphase in the EBSL alloy could reduce the critical stress for microvoid nucleation to 161.07 MPa by decoher-ing the particle/matrix interface,or allowing vacancy condensation near theδinterface,resulting in the formation of grain boundary microcracks.In the conventional alloy,however,the larger-sized MC car-bides which were formed during the solidification process(0.36 vol.%)nucleated the microcracks within the particles,leading to the transgranular fracture.Furthermore,the results indicated that the nanoscaleγ′andγ″precipitates contributed primarily to strengthening and coordinating intragranular deforma-tion during creep,in which the Orowan mechanism and shearing of a/6<211>partial dislocations and a/2<110>doublets were active forγ′andγ″precipitates,respectively.