期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Tuning the primary selective nanochannels of MOF thin-film nanocomposite nanofiltration membranes for efficient removal of hydrophobic endocrine disrupting compounds 被引量:1
1
作者 Ruobin Dai hongyi han +2 位作者 Yuting Zhu Xi Wang Zhiwei Wang 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2022年第4期1-13,共13页
Metal organic framework(MOF)incorporated thin-film nanocomposite(TFN)membranes have the potential to enhance the removal of endocrine disrupting compounds(EDCs).In MOF-TFN membranes,water transport nanochannels includ... Metal organic framework(MOF)incorporated thin-film nanocomposite(TFN)membranes have the potential to enhance the removal of endocrine disrupting compounds(EDCs).In MOF-TFN membranes,water transport nanochannels include(i)pores of polyamide layer,(ii)pores in MOFs and(iii)channels around MOFs(polyamide-MOF interface).However,information on how to tune the nanochannels to enhance EDCs rejection is scarce,impeding the refinement of TFN membranes toward efficient removal of EDCs.In this study,by changing the polyamide properties,the water transport nanochannels could be confined primarily in pores of MOFs when the polyamide layer became dense.Interestingly,the improved rejection of EDCs was dependent on the water transport channels of the TFN membrane.At low monomer concentration(i.e.,loose polyamide structure),the hydrophilic nanochannels of MIL-101(Cr)in the polyamide layer could not dominate the membrane separation performance,and hence the extent of improvement in EDCs rejection was relatively low.In contrast,at high monomer concentration(i.e.,dense polyamide structure),the hydrophilic nanochannels of MIL-101(Cr)were responsible for the selective removal of hydrophobic EDCs,demonstrating that the manipulation of water transport nanochannels in the TFN membrane could successfully overcome the permeability and EDCs rejection trade-off.Our results highlight the potential of tuning primary selective nanochannels of MOF-TFN membranes for the efficient removal of EDCs. 展开更多
关键词 Porous metal organic framework Thin-film nanocomposite membrane Primary selective nanochannels NANOFILTRATION Endocrine disrupting compounds
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部