期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
手性分子结构对嵌段共聚物自组装螺旋的影响
1
作者 梁鸿宇 李庆祥 +1 位作者 陆学民 路庆华 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2021年第1期59-66,共8页
手性小分子诱导嵌段共聚物手性组装是构筑手性可控螺旋结构的一种有效方法,但是目前对手性小分子引导螺旋结构形成的机制还没有明确认识。文中利用具有不同化学结构的手性掺杂剂与聚1,4-丁二烯-b-聚环氧乙烷(PBd-b-PEO)共组装,研究了手... 手性小分子诱导嵌段共聚物手性组装是构筑手性可控螺旋结构的一种有效方法,但是目前对手性小分子引导螺旋结构形成的机制还没有明确认识。文中利用具有不同化学结构的手性掺杂剂与聚1,4-丁二烯-b-聚环氧乙烷(PBd-b-PEO)共组装,研究了手性小分子化学结构的差异对螺旋结构形成的影响。通过小角散射、透射电镜和圆二色光谱证明了苹果酸和扁桃酸诱导嵌段共聚物中PEO形成螺旋相结构,而酒石酸二苄酯和二乙酰基酒石酸由于氢键位点和取代基效应无法诱导形成螺旋相结构。组装体由于聚合物结构变化和手性分子聚集态变化而呈现不同的手性信号变化规律。通过分子模拟分析了共组装体系中氢键缔合体的稳定性,从能量角度解释了手性分子结构对聚合物形成螺旋结构的影响。 展开更多
关键词 嵌段共聚物 螺旋组装 手性 分子模拟
下载PDF
Macroscopic superlubricity of potassium hydroxide solution achieved by incorporating in-situ released graphene from friction pairs
2
作者 hongyu liang Xinjie CHEN +6 位作者 Yongfeng BU Meijuan XU Gang ZHENG Kaixiong GAO Xijun HUA Yonghong FU Junyan ZHANG 《Friction》 SCIE EI CAS CSCD 2023年第4期567-579,共13页
Graphene(G),as a typical two-dimensional material,is often used as an additive for liquid lubricants.However,graphene is mostly added to liquid lubricants in a one-time manner in friction;it mainly exists in the form ... Graphene(G),as a typical two-dimensional material,is often used as an additive for liquid lubricants.However,graphene is mostly added to liquid lubricants in a one-time manner in friction;it mainly exists in the form of multilayer agglomerated structures due to theπ–πstacking between graphene sheets,making it unable to fully exert the synergistic lubrication function.Herein,we propose a new macroscopic superlubric system of graphene/potassium hydroxide(G/KOH)solution;and the graphene additive involved is exfoliated in-situ from graphene/epoxy(G/EP)friction pair by friction,continuously providing freshly-peeled graphene into KOH solution and minimizing the adverse effects of graphene agglomeration.Moreover,the in-situ produced graphene additive has thinner thickness and better anti-aggregation ability,which provide more graphene to accommodate OH−,form more stacked sandwich structures of OH−/graphene/OH−between friction pairs(i.e.,equivalent to a moving pulley block with more wheels),and finally realize superlubricity.This study develops a new liquid superlubric system suitable for alkaline environments,and at the same time proposes a new way to gradually release graphene additives in situ,rather than adding them all at once,deepening the understanding to liquid superlubricity mechanism,and paving the experimental foundation for the practical application of macroscopic superlubricity. 展开更多
关键词 liquid superlubricity concentrated potassium hydroxide(KOH)solution in-situ graphene(G)additives stacked sandwich structure electric double layer(EDL) hydrogen bonds(H-bonds)
原文传递
Review of Crashworthiness Studies on Cellular Structures
3
作者 hongyu liang Ying Zhao +2 位作者 Shixian Chen Fangwu Ma Dengfeng Wang 《Automotive Innovation》 EI CSCD 2023年第3期379-403,共25页
The application of lightweight structures with excellent energy absorption performance is crucial for enhancing vehicle safety and energy efficiency.Cellular structures,inspired by the characteristics observed in natu... The application of lightweight structures with excellent energy absorption performance is crucial for enhancing vehicle safety and energy efficiency.Cellular structures,inspired by the characteristics observed in natural organisms,have exhibited exceptional structural utilization in terms of energy absorption compared with traditional structures.In recent years,various innovative cellular structures have been proposed to meet different engineering needs,resulting in significant performance improvements.This paper provides a comprehensive overview of novel cellular structures for energy absorption applications.In particular,it outlines the application forms and design concepts of cellular structures under typical loading conditions in vehicle collisions,including axial loading,oblique loading,bending loading,and blast loading.Cellular structures have evolved to meet the demands of complex loading conditions and diverse research methods,focusing on achieving high-performance characteristics across multiple load cases.Moreover,this review discusses manufacturing techniques and strate-gies for enhancing the manufacturing performance of cellular structures.Finally,current key challenges and future research directions for cellular structures are discussed.The aim of this study is to provide valuable guidelines for researchers and engineers in the development of next-generation lightweight cellular structures. 展开更多
关键词 HONEYCOMB Lattice structure Multi-cell tube Cellular structure filled tube CRASHWORTHINESS Multiple load cases
原文传递
Effects of Cell Microtopology on the In-plane Dynamic Crushing Analysis of Re-entrant Square Cellular Material 被引量:6
4
作者 Fangwu Ma Ying Zhao +1 位作者 hongyu liang Jiawei Wang 《Automotive Innovation》 EI 2018年第1期24-34,共11页
With the development of three-dimensional printing technologies, so-called cellular materials have achieved increasingattention due to outstanding properties. Unlike pure solid structures, properties of cellular mater... With the development of three-dimensional printing technologies, so-called cellular materials have achieved increasingattention due to outstanding properties. Unlike pure solid structures, properties of cellular materials are influenced by bothutilized material and cell microtopology. The present paper proposes a novel type of re-entrant square cellular material.To explore the relationship between microtopology and macrodynamic responses systematically, an explicit dynamic finiteelement simulation method is used. This work starts by constructing theoretical models of relative density employing atwo-dimensional unit cell. Then, the effects of geometric features and configurations on dynamic properties are explored,and simulations indicate that variations of geometric parameters strongly affect properties and that the staggered re-entrantsquares are more stable than the regular re-entrant squares. Subsequently, the effects of the impact velocity on dynamiccrushing behaviors are elaborated. On this basis, the relationship of unit mass energy absorption and geometric features isobtained by employing the response surface method. Furthermore, with targets of maximum unit mass energy absorption andminimum relative density, the optimal structural parameters are achieved by using non-dominated sorting genetic algorithm.The study provides a detailed introduction to dynamic behaviors of cellular materials and guidance to design new structureswith superior characteristics of energy absorption. 展开更多
关键词 Re-entrant cellular material Dynamic crushing Microtopology IN-PLANE Finite element analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部