Disparities in the substrate affinity and tolerance threshold for ammonia have been believed to play a key role in driving niche differentiation between ammonia-oxidizing archaea (AOA) and bacteria (AOB);however, rece...Disparities in the substrate affinity and tolerance threshold for ammonia have been believed to play a key role in driving niche differentiation between ammonia-oxidizing archaea (AOA) and bacteria (AOB);however, recent surveys argue that direct competition between AOA and AOB is also important in this phenomenon. Accordingly, it is reasonable to predict that diverse AOA lineages would grow in ammonium (NH_(4)^(+))-rich alkaline arable soils if AOB growth is suppressed. To test this hypothesis, a microcosm study was established using three different types of alkaline arable soils, in which a high NH_(4)^(+) concentration (200 μg N g^(-1) dry soil) was maintained by routinely replenishing urea and the activities of AOB were selectively inhibited by 1-octyne or 3,4-dimethylpyrazole phosphate (DMPP). Compared with amendment with urea alone, 1-octyne partially retarded AOB growth, while DMPP completely inhibited AOB. Both inhibitors accelerated the growth of AOA, with significantly higher ratios of abundance of AOA to AOB observed with DMPP amendment across soils. Nonmetric multidimensional scaling analysis (NMDS) indicated that different treatments significantly altered the community structures of both AOA and AOB and AOA OTUs enriched by high-NH_(4)^(+) amendment were taxonomically constrained across the soils tested and closely related to Nitrososphaera viennensis EN76 and N. garnensis. Given that these representative strains have been demonstrated to be sensitive to high ammonia concentrations, our results suggest that it is the competitiveness for ammonia, rather than disparities in substrate affinity and tolerance threshold for ammonia, that drives niche differentiation between these phylotypes and AOB in NH_(4)^(+)-rich alkaline soils.展开更多
This paper is concerned with the well-posedness and large-time behavior of a two-dimensional PDE-ODE hybrid chemotaxis system describing the initiation of tumor angiogenesis. We first transform the system via a Cole-H...This paper is concerned with the well-posedness and large-time behavior of a two-dimensional PDE-ODE hybrid chemotaxis system describing the initiation of tumor angiogenesis. We first transform the system via a Cole-Hopf type transformation into a parabolic-hyperbolic system and then show that the solution to the transformed system converges to a constant equilibrium state as time tends to infinity. Finally we reverse the Cole-Hopf transformation and obtain the relevant results for the pre-transformed PDE-ODE hybrid system.In contrast to the existing related results, where continuous initial data is imposed, we are able to prove the asymptotic stability for discontinuous initial data with large oscillations. The key ingredient in our proof is the use of the so-called "effective viscous flux", which enables us to obtain the desired energy estimates and regularity. The technique of the "effective viscous flux" turns out to be a very useful tool to study chemotaxis systems with initial data having low regularity and was rarely(if not) used in the literature for chemotaxis models.展开更多
基金supported by the National Key Research and Development Program of China(Nos.2017YFD0200707 and 2017YFD0200102)the Fundamental Research Funds for the Central Universities of China(No.2019FZJD007)for Yongchao LIANGthe National Natural Science Foundation of China(No.31800418)for Chang YIN.
文摘Disparities in the substrate affinity and tolerance threshold for ammonia have been believed to play a key role in driving niche differentiation between ammonia-oxidizing archaea (AOA) and bacteria (AOB);however, recent surveys argue that direct competition between AOA and AOB is also important in this phenomenon. Accordingly, it is reasonable to predict that diverse AOA lineages would grow in ammonium (NH_(4)^(+))-rich alkaline arable soils if AOB growth is suppressed. To test this hypothesis, a microcosm study was established using three different types of alkaline arable soils, in which a high NH_(4)^(+) concentration (200 μg N g^(-1) dry soil) was maintained by routinely replenishing urea and the activities of AOB were selectively inhibited by 1-octyne or 3,4-dimethylpyrazole phosphate (DMPP). Compared with amendment with urea alone, 1-octyne partially retarded AOB growth, while DMPP completely inhibited AOB. Both inhibitors accelerated the growth of AOA, with significantly higher ratios of abundance of AOA to AOB observed with DMPP amendment across soils. Nonmetric multidimensional scaling analysis (NMDS) indicated that different treatments significantly altered the community structures of both AOA and AOB and AOA OTUs enriched by high-NH_(4)^(+) amendment were taxonomically constrained across the soils tested and closely related to Nitrososphaera viennensis EN76 and N. garnensis. Given that these representative strains have been demonstrated to be sensitive to high ammonia concentrations, our results suggest that it is the competitiveness for ammonia, rather than disparities in substrate affinity and tolerance threshold for ammonia, that drives niche differentiation between these phylotypes and AOB in NH_(4)^(+)-rich alkaline soils.
基金supported by Academy of Mathematics and Systems Science,Chinese Academy of Sciences and the Joint Laboratory of Applied Mathematics in the Hong Kong Polytechnic University where he was a postdoctoral fellow,National Natural Science Foundation of China(Grant No.11901115)Natural Science Foundation of Guangdong Province(Grant No.2019A1515010706)+4 种基金Guangdong University of Technology(Grant No.220413228)supported by the Hong Kong Research Grant Council General Research Fund(Grant No.Poly U 153031/17P)the Hong Kong Polytechnic University(Grant No.ZZHY)supported by National Natural Science Foundation of China(Grant Nos.11771150,11831003 and 11926346)Guangdong Basic and Applied Basic Research Foundation(Grant No.2020B1515310015)。
文摘This paper is concerned with the well-posedness and large-time behavior of a two-dimensional PDE-ODE hybrid chemotaxis system describing the initiation of tumor angiogenesis. We first transform the system via a Cole-Hopf type transformation into a parabolic-hyperbolic system and then show that the solution to the transformed system converges to a constant equilibrium state as time tends to infinity. Finally we reverse the Cole-Hopf transformation and obtain the relevant results for the pre-transformed PDE-ODE hybrid system.In contrast to the existing related results, where continuous initial data is imposed, we are able to prove the asymptotic stability for discontinuous initial data with large oscillations. The key ingredient in our proof is the use of the so-called "effective viscous flux", which enables us to obtain the desired energy estimates and regularity. The technique of the "effective viscous flux" turns out to be a very useful tool to study chemotaxis systems with initial data having low regularity and was rarely(if not) used in the literature for chemotaxis models.