期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Tailored BiVO_(4)/In_(2)O_(3)nanostructures with boosted charge separation ability toward unassisted water splitting 被引量:1
1
作者 Mi Gyoung Lee Jin Wook Yang +10 位作者 Ik Jae park Tae Hyung Lee hoonkee park Woo Seok Cheon Sol ALee Hyungsoo Lee Su Geun Ji Jun Min Suh Jooho Moon Jin Young Kim Ho Won Jang 《Carbon Energy》 SCIE CSCD 2023年第6期45-59,共15页
The development of new heterostructures with high photoactivity is a breakthrough for the limitation of solar-driven water splitting.Here,we first introduce indium oxide(In_(2)O_(3))nanorods(NRs)as a novel electron tr... The development of new heterostructures with high photoactivity is a breakthrough for the limitation of solar-driven water splitting.Here,we first introduce indium oxide(In_(2)O_(3))nanorods(NRs)as a novel electron transport layer for bismuth vanadate(BiVO_(4))with a short charge diffusion length.In_(2)O_(3)NRs reinforce the electron transport and hole blocking of BiVO_(4),surpassing the state-of-the-art photoelectrochemical performances of BiVO_(4)-based photoanodes.Also,a tannin-nickel-iron complex(TANF)is used as an oxygen evolution catalyst to speed up the reaction kinetics.The final TANF/BiVO_(4)/In_(2)O_(3)NR photoanode generates photocurrent densities of 7.1 mAcm^(−2) in sulfite oxidation and 4.2 mA cm^(−2) in water oxidation at 1.23 V versus the reversible hydrogen electrode.Furthermore,the“artificial leaf,”which is a tandem cell with a perovskite/silicon solar cell,shows a solar-to-hydrogen conversion efficiency of 6.2%for unbiased solar water splitting.We reveal significant advances in the photoactivity of TANF/BiVO_(4)/In_(2)O_(3)NRs from the tailored nanostructure and band structure for charge dynamics. 展开更多
关键词 bismuth vanadate HETEROJUNCTION indium oxide NANOSTRUCTURE photoelectrochemical water splitting
下载PDF
Crystal Facet Engineering of TiO_(2) Nanostructures for Enhancing Photoelectrochemical Water Splitting with BiVO_(4) Nanodots 被引量:3
2
作者 Mi Gyoung Lee Jin Wook Yang +9 位作者 hoonkee park Cheon Woo Moon Dinsefa M.Andoshe Jongseong park Chang‑Ki Moon Tae Hyung Lee Kyoung Soon Choi Woo Seok Cheon Jang‑Joo Kim Ho Won Jang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第3期201-215,共15页
Although bismuth vanadate(BiVO4)has been promising as photoanode material for photoelectrochemical water splitting,its charge recombination issue by short charge diffusion length has led to various studies about heter... Although bismuth vanadate(BiVO4)has been promising as photoanode material for photoelectrochemical water splitting,its charge recombination issue by short charge diffusion length has led to various studies about heterostructure photoanodes.As a hole blocking layer of BiVO4,titanium dioxide(TiO_(2)) has been considered unsuitable because of its relatively positive valence band edge and low electrical conductivity.Herein,a crystal facet engineering of TiO_(2) nanostructures is proposed to control band structures for the hole blocking layer of BiVO4 nanodots.We design two types of TiO_(2) nanostructures,which are nanorods(NRs)and nanoflowers(NFs)with different(001)and(110)crystal facets,respectively,and fabricate BiVO4/TiO_(2) heterostructure photoanodes.The BiVO4/TiO_(2) NFs showed 4.8 times higher photocurrent density than the BiVO4/TiO_(2) NRs.Transient decay time analysis and time-resolved photoluminescence reveal the enhancement is attributed to the reduced charge recombination,which is originated from the formation of type II band alignment between BiVO4 nanodots and TiO_(2) NFs.This work provides not only new insights into the interplay between crystal facets and band structures but also important steps for the design of highly efficient photoelectrodes. 展开更多
关键词 Crystal facet control Bismuth vanadate Titanium dioxide HETEROJUNCTION Water splitting
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部