The aim of the present study was to investigate the effect of element segregation on the microstructure and γ′ phase in a γ/γ′ cobalt-based superalloy. Several samples were prepared from a cast alloy and homogeni...The aim of the present study was to investigate the effect of element segregation on the microstructure and γ′ phase in a γ/γ′ cobalt-based superalloy. Several samples were prepared from a cast alloy and homogenized at 1300°C for different times, with a maximum of 24 h. A microstructural study of the cast alloy using wavelength-dispersive spectroscopic analysis revealed that elements such as Al, Ti, and Ni segregated mostly within interdendritic regions, whereas W atoms were segregated within dendrite cores. With an increase in homogenization time, segregation decreased and the initial dendritic structure was eliminated. Field-emission scanning electron microscopy micrographs showed that the γ′ phases in the cores and interdendritic regions of the as-cast alloy were 392 and 124 nm, respectively. The size difference of γ′ was found to be due to the different segregation behaviors of constituent elements during solidification. After homogenization, particularly after 16 h, segregation decreased; thus, the size, chemical composition, and hardness of the precipitated γ′ phase was mostly uniform throughout the samples.展开更多
The simulation and experimental results obtained from stretching test of a commercial sheet of AA1200 aluminum alloy were compared and evaluated. Uniaxial tensile tests were carried out to obtain the required input pa...The simulation and experimental results obtained from stretching test of a commercial sheet of AA1200 aluminum alloy were compared and evaluated. Uniaxial tensile tests were carried out to obtain the required input parameters for simulation. Finite element analysis of the forming process was carried out using Abaqus/Explicit by considering von Mises and Hill-1948 yield criteria. Simulation results including punch force and strain distribution were compared and validated with the experimental results. The results reveal that using anisotropic yield criteria for simulation has a better match in both cases with the experiments.展开更多
The commercial finite element package ANSYSTM was utilized for prediction of temperature distribution during reheating treatment of hot torsion test (HTT) samples with different geometries for API-X70 microalloyed s...The commercial finite element package ANSYSTM was utilized for prediction of temperature distribution during reheating treatment of hot torsion test (HTT) samples with different geometries for API-X70 microalloyed steel. Simulation results show that an inappropriate choice of test specimen geometry and reheating conditions before deformation could lead to non-uniform temperature distribution within the gauge section of specimen. Therefore, assumptions of isothermal experimental conditions and zero temperature gradient within the specimen cross section appear unjustified and led to uncertainties of flow curve obtained. Recommendations on finding proper specimen geometry for reducing temperature gradient along the gauge part of specimen will be given to create homogeneous initial microstructure as much as possible before deformation in order to avoid uncertainty in consequent results of HTT.展开更多
文摘The aim of the present study was to investigate the effect of element segregation on the microstructure and γ′ phase in a γ/γ′ cobalt-based superalloy. Several samples were prepared from a cast alloy and homogenized at 1300°C for different times, with a maximum of 24 h. A microstructural study of the cast alloy using wavelength-dispersive spectroscopic analysis revealed that elements such as Al, Ti, and Ni segregated mostly within interdendritic regions, whereas W atoms were segregated within dendrite cores. With an increase in homogenization time, segregation decreased and the initial dendritic structure was eliminated. Field-emission scanning electron microscopy micrographs showed that the γ′ phases in the cores and interdendritic regions of the as-cast alloy were 392 and 124 nm, respectively. The size difference of γ′ was found to be due to the different segregation behaviors of constituent elements during solidification. After homogenization, particularly after 16 h, segregation decreased; thus, the size, chemical composition, and hardness of the precipitated γ′ phase was mostly uniform throughout the samples.
文摘The simulation and experimental results obtained from stretching test of a commercial sheet of AA1200 aluminum alloy were compared and evaluated. Uniaxial tensile tests were carried out to obtain the required input parameters for simulation. Finite element analysis of the forming process was carried out using Abaqus/Explicit by considering von Mises and Hill-1948 yield criteria. Simulation results including punch force and strain distribution were compared and validated with the experimental results. The results reveal that using anisotropic yield criteria for simulation has a better match in both cases with the experiments.
文摘The commercial finite element package ANSYSTM was utilized for prediction of temperature distribution during reheating treatment of hot torsion test (HTT) samples with different geometries for API-X70 microalloyed steel. Simulation results show that an inappropriate choice of test specimen geometry and reheating conditions before deformation could lead to non-uniform temperature distribution within the gauge section of specimen. Therefore, assumptions of isothermal experimental conditions and zero temperature gradient within the specimen cross section appear unjustified and led to uncertainties of flow curve obtained. Recommendations on finding proper specimen geometry for reducing temperature gradient along the gauge part of specimen will be given to create homogeneous initial microstructure as much as possible before deformation in order to avoid uncertainty in consequent results of HTT.