UAV-aided cellular networks,millimeter wave(mm-wave) communications and multi-antenna techniques are viewed as promising components of the solution for beyond-5G(B5G) and even 6G communications.By leveraging the power...UAV-aided cellular networks,millimeter wave(mm-wave) communications and multi-antenna techniques are viewed as promising components of the solution for beyond-5G(B5G) and even 6G communications.By leveraging the power of stochastic geometry,this paper aims at providing an effective framework for modeling and analyzing a UAV-aided heterogeneous cellular network,where the terrestrial base stations(TBSs) and the UAV base stations(UBSs) coexist,and the UBSs are provided with mm-wave and multi-antenna techniques.By modeling the TBSs as a PPP and the UBSs as a Matern hard-core point process of type Ⅱ(MPH-Ⅱ),approximated but accurate analytical results for the average rate of the typical user of both tiers are derived through an approximation method based on the mean interference-to-signal ratio(MISR) gain.The influence of some relevant parameters is discussed in detail,and some insights into the network deployment and optimization are revealed.Numerical results show that some trade-offs are worthy of being considered,such as the antenna array size,the altitude of the UAVs and the power control factor of the UBSs.展开更多
The accuracy of the positioning system in indoor environment is often affected by none-line-of-sight(NLOS) propagation. In order to improve the positioning accuracy in indoor NLOS environment, a method used ultra-wide...The accuracy of the positioning system in indoor environment is often affected by none-line-of-sight(NLOS) propagation. In order to improve the positioning accuracy in indoor NLOS environment, a method used ultra-wide-band(UWB) technology, which based on time of arrival(TOA) principle, combining Markov chain and fingerprint matching was proposed. First, the TOA algorithm is used to locate the target tag. Then the Markov chain is used to identify if blocking happened and revise the position result. And the fingerprint matching is used to further improve the position accuracy. Finally, an experiment system was built to test the accuracy of the proposed method and the traditional Kalman filter method. The experimental results show that, compared with the traditional Kalman filter method, the proposed method can improve the positioning accuracy in indoor NLOS environment.展开更多
基金supported by National Natural Science Foundation of China (No.62001135)the Joint funds for Regional Innovation and Development of the National Natural Science Foundation of China(No.U21A20449)the Beijing Natural Science Foundation Haidian Original Innovation Joint Fund (No.L232002)
文摘UAV-aided cellular networks,millimeter wave(mm-wave) communications and multi-antenna techniques are viewed as promising components of the solution for beyond-5G(B5G) and even 6G communications.By leveraging the power of stochastic geometry,this paper aims at providing an effective framework for modeling and analyzing a UAV-aided heterogeneous cellular network,where the terrestrial base stations(TBSs) and the UAV base stations(UBSs) coexist,and the UBSs are provided with mm-wave and multi-antenna techniques.By modeling the TBSs as a PPP and the UBSs as a Matern hard-core point process of type Ⅱ(MPH-Ⅱ),approximated but accurate analytical results for the average rate of the typical user of both tiers are derived through an approximation method based on the mean interference-to-signal ratio(MISR) gain.The influence of some relevant parameters is discussed in detail,and some insights into the network deployment and optimization are revealed.Numerical results show that some trade-offs are worthy of being considered,such as the antenna array size,the altitude of the UAVs and the power control factor of the UBSs.
基金supported by the National Natural Science Foundation of China ( 61701042)。
文摘The accuracy of the positioning system in indoor environment is often affected by none-line-of-sight(NLOS) propagation. In order to improve the positioning accuracy in indoor NLOS environment, a method used ultra-wide-band(UWB) technology, which based on time of arrival(TOA) principle, combining Markov chain and fingerprint matching was proposed. First, the TOA algorithm is used to locate the target tag. Then the Markov chain is used to identify if blocking happened and revise the position result. And the fingerprint matching is used to further improve the position accuracy. Finally, an experiment system was built to test the accuracy of the proposed method and the traditional Kalman filter method. The experimental results show that, compared with the traditional Kalman filter method, the proposed method can improve the positioning accuracy in indoor NLOS environment.