In this paper, we formulate interface problem and Neumann elliptic boundary value problem into a form of linear operator equations with self-adjoint positive definite op- erators. We prove that in the discrete level t...In this paper, we formulate interface problem and Neumann elliptic boundary value problem into a form of linear operator equations with self-adjoint positive definite op- erators. We prove that in the discrete level the condition number of these operators is independent of the mesh size. Therefore, given a prescribed error tolerance, the classical conjugate gradient algorithm converges within a fixed number of iterations. The main computation task at each iteration is to solve a Dirichlet Poisson boundary value problem in a rectangular domain, which can be furnished with fast Poisson solver. The overall computational complexity is essentially of linear scaling.展开更多
基金The work of the first author was supported by the National Natural Science Foundation of China (91330203). The work of the second author was supported by the National Natural Science Foundation of China (10371218) and the Initiative Scientific Research Program of Tsinghua University.
文摘In this paper, we formulate interface problem and Neumann elliptic boundary value problem into a form of linear operator equations with self-adjoint positive definite op- erators. We prove that in the discrete level the condition number of these operators is independent of the mesh size. Therefore, given a prescribed error tolerance, the classical conjugate gradient algorithm converges within a fixed number of iterations. The main computation task at each iteration is to solve a Dirichlet Poisson boundary value problem in a rectangular domain, which can be furnished with fast Poisson solver. The overall computational complexity is essentially of linear scaling.