Investigated by this study is an MFC actuator attached to the surface of a Carbon Fiber Reinforced Polymer(CFRP)composite beam to form a beam actuator system.Analytically capturing the characteristics of such system i...Investigated by this study is an MFC actuator attached to the surface of a Carbon Fiber Reinforced Polymer(CFRP)composite beam to form a beam actuator system.Analytically capturing the characteristics of such system is essential.A novel analytical methodology considering the transverse shear strain and active stiffening effect is proposed,which was newly applied to analyze the static and dynamic behaviors of the beam actuator system.The governing equations of the beam actuator system were obtained via generalized Hamilton’s principle.A distributed transfer function formulation was developed.Then,the closed form solution was derived by using the Green’s function.Frequency response,natural frequencies,and modal shapes of the beam actuator system were obtained.The solution is analytical without using any truncated series or admissible functions at any arbitrary boundary conditions.Finite Element Method(FEM)results were also obtained to compare with that of the proposed method.The predictions of the analyses were verified experimentally,which shows the correctness and effectiveness of the proposed method.展开更多
文摘Investigated by this study is an MFC actuator attached to the surface of a Carbon Fiber Reinforced Polymer(CFRP)composite beam to form a beam actuator system.Analytically capturing the characteristics of such system is essential.A novel analytical methodology considering the transverse shear strain and active stiffening effect is proposed,which was newly applied to analyze the static and dynamic behaviors of the beam actuator system.The governing equations of the beam actuator system were obtained via generalized Hamilton’s principle.A distributed transfer function formulation was developed.Then,the closed form solution was derived by using the Green’s function.Frequency response,natural frequencies,and modal shapes of the beam actuator system were obtained.The solution is analytical without using any truncated series or admissible functions at any arbitrary boundary conditions.Finite Element Method(FEM)results were also obtained to compare with that of the proposed method.The predictions of the analyses were verified experimentally,which shows the correctness and effectiveness of the proposed method.