Keeping steps ahead of the bacteria in the race for more efficacious antibacterial strategies is increasingly difficult with the advent of bacterial resistance genes.Herein,we engineered copper sulfide nanoclusters(Cu...Keeping steps ahead of the bacteria in the race for more efficacious antibacterial strategies is increasingly difficult with the advent of bacterial resistance genes.Herein,we engineered copper sulfide nanoclusters(CuS_(x) NCs)with variable sulfur defects for enhanced dual-treatment of bacterial infections by manipulating photothermal effects and Fenton-like activity.Next,by encasing CuS_(x) NCs with a complex mixture of amino acids and short peptides derived from Luria-Bertani bacterial culture media as a protein corona,we managed to coax E.Coli to take up these CuS_(x) NCs.As a whole,Amino-Pep-CuS_(x) NCs was perceived as a food source and actively consumed by bacteria,enhancing their effective uptake by at least 1.5-fold greater than full length BSA protein BSA-corona CuS_(x) NCs.Through strategically using defect-engineering,we successfully fine-tune photothermal effect and Fenton-like capacity of CuS_(x) NCs.Increased sulfur defects lead to reduced but sufficient heat generation under solar-light irradiation and increased production of toxic hydroxyl radicals.By fine-tuning sulfur defects during synthesis,we achieve CuS_(x) NCs with an optimal synergistic effect,significantly enhancing their bactericidal properties.These ultra-small and biodegradable CuS_(x) NCs can rapidly break down after treatment for clearance.Thus,Amino-Pep-CuS_(x) NCs demonstrate effective eradication of bacteria both in vitro and in vivo because of their relatively high uptake,optimal balanced photothermal and chemodynamic outcomes.Our study offers a straightforward and efficient method to enhance bacterial uptake of next generation of antibacterial agents.展开更多
Flexible polymeric patches find widespread applications in biomedicine because of their biological and tunable features including excellent patient compliance,superior biocompatibility and biodegradation,as well as hi...Flexible polymeric patches find widespread applications in biomedicine because of their biological and tunable features including excellent patient compliance,superior biocompatibility and biodegradation,as well as high loading capability and permeability of drug.Such polymeric patches are classified into microneedles(MNs),hydrogel,microcapsule,microsphere and fiber depending on the formed morphology.The combination of nanomaterials with polymeric patches allows for improved advantages of increased curative efficacy and lowered systemic toxicity,promoting on-demand and regulated drug administration,thus providing the great potential to their clinic translation.In this review,the category of flexible polymeric patches that are utilized to integrate with nanomaterials is briefly presented and their advantages in bioapplications are further discussed.The applications of nanomaterials embedded polymeric patches in non-cancerous diseases were also systematically reviewed,including diabetes therapy,wound healing,dermatological disease therapy,bone regeneration,cardiac repair,hair repair,obesity therapy and some immune disease therapy.Alternatively,the limitations,latest challenges and future perspectives of such biomedical therapeutic devices are addressed.展开更多
基金the funding provided by the National University of Singapore Reimagine Grant(A-0009179-02-00,A-0009179-03-00)National Natural Science Foundation of China(82303841)+1 种基金Hunan Provincial Natural Science Foundation(2023JJ40800)the program of China Scholarships Council(No.202006090323).
文摘Keeping steps ahead of the bacteria in the race for more efficacious antibacterial strategies is increasingly difficult with the advent of bacterial resistance genes.Herein,we engineered copper sulfide nanoclusters(CuS_(x) NCs)with variable sulfur defects for enhanced dual-treatment of bacterial infections by manipulating photothermal effects and Fenton-like activity.Next,by encasing CuS_(x) NCs with a complex mixture of amino acids and short peptides derived from Luria-Bertani bacterial culture media as a protein corona,we managed to coax E.Coli to take up these CuS_(x) NCs.As a whole,Amino-Pep-CuS_(x) NCs was perceived as a food source and actively consumed by bacteria,enhancing their effective uptake by at least 1.5-fold greater than full length BSA protein BSA-corona CuS_(x) NCs.Through strategically using defect-engineering,we successfully fine-tune photothermal effect and Fenton-like capacity of CuS_(x) NCs.Increased sulfur defects lead to reduced but sufficient heat generation under solar-light irradiation and increased production of toxic hydroxyl radicals.By fine-tuning sulfur defects during synthesis,we achieve CuS_(x) NCs with an optimal synergistic effect,significantly enhancing their bactericidal properties.These ultra-small and biodegradable CuS_(x) NCs can rapidly break down after treatment for clearance.Thus,Amino-Pep-CuS_(x) NCs demonstrate effective eradication of bacteria both in vitro and in vivo because of their relatively high uptake,optimal balanced photothermal and chemodynamic outcomes.Our study offers a straightforward and efficient method to enhance bacterial uptake of next generation of antibacterial agents.
基金the Young Individual Research Grants(YIRG)(Grant No.A2084c0168)Singapore and A*STAR Central Funds(Grant No.C211718004),Singapore.
文摘Flexible polymeric patches find widespread applications in biomedicine because of their biological and tunable features including excellent patient compliance,superior biocompatibility and biodegradation,as well as high loading capability and permeability of drug.Such polymeric patches are classified into microneedles(MNs),hydrogel,microcapsule,microsphere and fiber depending on the formed morphology.The combination of nanomaterials with polymeric patches allows for improved advantages of increased curative efficacy and lowered systemic toxicity,promoting on-demand and regulated drug administration,thus providing the great potential to their clinic translation.In this review,the category of flexible polymeric patches that are utilized to integrate with nanomaterials is briefly presented and their advantages in bioapplications are further discussed.The applications of nanomaterials embedded polymeric patches in non-cancerous diseases were also systematically reviewed,including diabetes therapy,wound healing,dermatological disease therapy,bone regeneration,cardiac repair,hair repair,obesity therapy and some immune disease therapy.Alternatively,the limitations,latest challenges and future perspectives of such biomedical therapeutic devices are addressed.