The European Center for Medium-Range Weather Forecast (ECMWF) Re-Analysis (ERA-40) and the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) ECMWF (ERA-40) and ...The European Center for Medium-Range Weather Forecast (ECMWF) Re-Analysis (ERA-40) and the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) ECMWF (ERA-40) and NCEP–NCAR reanalysis data were compared with Antarctic station observations, including surface-layer and upper-layer atmospheric observations, on intraseasonal and interannual timescales. At the interannual timescale, atmospheric pressure at different height levels in the ERA-40 data are in better agreement with observed pressure than that in the NCEP–NCAR reanalysis data. ERA-40 reanalysis also outperforms NCEP–NCAR reanalysis in atmospheric temperature, except in the surface layer where the biases are somewhat larger. The wind velocity fields in both datasets do not agree well with surface-and upper-layer atmospheric observations. At intraseasonal timescales, both datasets capture the observed intraseasonal variability in pressure and temperature during austral winter.展开更多
基金This research was partially funded by the Chinese Polar Program Strategic Research Fund (No. 20080218)the National Natural Science Foundation of China (40233032-40640420556)MOST(2006BAB18B03 and 2006BAB18B05)
文摘The European Center for Medium-Range Weather Forecast (ECMWF) Re-Analysis (ERA-40) and the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) ECMWF (ERA-40) and NCEP–NCAR reanalysis data were compared with Antarctic station observations, including surface-layer and upper-layer atmospheric observations, on intraseasonal and interannual timescales. At the interannual timescale, atmospheric pressure at different height levels in the ERA-40 data are in better agreement with observed pressure than that in the NCEP–NCAR reanalysis data. ERA-40 reanalysis also outperforms NCEP–NCAR reanalysis in atmospheric temperature, except in the surface layer where the biases are somewhat larger. The wind velocity fields in both datasets do not agree well with surface-and upper-layer atmospheric observations. At intraseasonal timescales, both datasets capture the observed intraseasonal variability in pressure and temperature during austral winter.