To study the effect of a progressive surface wave on the flapping motion of a vertical turbulent plane jet in shallow water,the laser visualizations and measurements were carried out in a water tank.The images of visu...To study the effect of a progressive surface wave on the flapping motion of a vertical turbulent plane jet in shallow water,the laser visualizations and measurements were carried out in a water tank.The images of visualization by laser-induced fluorescence(LIF)technique show that the jet flapping motion occurs in the wave environ-ment.Using the wave height gauge and laser Doppler velocimetry(LDV) ,experimental results show that the jet flapping motions indeed lock-in to the wave oscillations if the wave frequency is close to but lower than the nature frequency of jet flapping motion.The phenomenon does not occur when the wave frequency is above the nature frequency of jet flapping motion.展开更多
A submerged,vertical turbulent plane water jet impinging onto a free surface will be self-excited into a flapping oscillation when the jet velocity,leaving the jet orifice,exceeds a critical value.The flapping phenome...A submerged,vertical turbulent plane water jet impinging onto a free surface will be self-excited into a flapping oscillation when the jet velocity,leaving the jet orifice,exceeds a critical value.The flapping phenomenon was verified simultaneously in this paper by laser Doppler velocimeter measurement and numerical analyses with volume of fluid approach coupled with a large eddy simulation turbulent model.The general agreement of mean velocities between numerical predictions and experimental results in self-similar region is good for two cases:Reynolds numbers 2090 and 2970,which correspond to the stable impinging jet and flapping jet.Results show that the flapping jet is a new flow pattern for submerged turbulent plane jets with characteristic flapping frequency,and that the decay of the mean velocity along the jet centerline is considerably faster than that of the stable impinging state.展开更多
文摘To study the effect of a progressive surface wave on the flapping motion of a vertical turbulent plane jet in shallow water,the laser visualizations and measurements were carried out in a water tank.The images of visualization by laser-induced fluorescence(LIF)technique show that the jet flapping motion occurs in the wave environ-ment.Using the wave height gauge and laser Doppler velocimetry(LDV) ,experimental results show that the jet flapping motions indeed lock-in to the wave oscillations if the wave frequency is close to but lower than the nature frequency of jet flapping motion.The phenomenon does not occur when the wave frequency is above the nature frequency of jet flapping motion.
基金supported by the National Natural Science Foundation of China(Grant No.10472046)the Priority Academic Program Development of Jiangsu Higher Education Institutions,grants from the Postgraduate Research and Innovation Project of Jiangsu Province(Grant No.CX08B_035Z)PhD Thesis Innovation and Excellence Fund of Nanjing University of Aeronautics&Astronautics(Grant No.BCXJ08-01)
文摘A submerged,vertical turbulent plane water jet impinging onto a free surface will be self-excited into a flapping oscillation when the jet velocity,leaving the jet orifice,exceeds a critical value.The flapping phenomenon was verified simultaneously in this paper by laser Doppler velocimeter measurement and numerical analyses with volume of fluid approach coupled with a large eddy simulation turbulent model.The general agreement of mean velocities between numerical predictions and experimental results in self-similar region is good for two cases:Reynolds numbers 2090 and 2970,which correspond to the stable impinging jet and flapping jet.Results show that the flapping jet is a new flow pattern for submerged turbulent plane jets with characteristic flapping frequency,and that the decay of the mean velocity along the jet centerline is considerably faster than that of the stable impinging state.