为探讨采用T1WI增强图像,利用融合注意力机制的掩膜区域神经网络(Mask RCNN)模型实现对桥小脑角区听神经瘤和脑膜瘤的识别.本文回顾性收集经病理或临床诊断确诊的脑膜瘤116例和听神经瘤427例,经图像筛选后共采用脑膜瘤872张和听神经瘤2...为探讨采用T1WI增强图像,利用融合注意力机制的掩膜区域神经网络(Mask RCNN)模型实现对桥小脑角区听神经瘤和脑膜瘤的识别.本文回顾性收集经病理或临床诊断确诊的脑膜瘤116例和听神经瘤427例,经图像筛选后共采用脑膜瘤872张和听神经瘤2467张.按近似7:1.5:1.5的比例分为训练集、验证集和测试集.对图像进行预处理后,采用以Resnet50、Resnet101和VGG19为主干网络的Mask RCNN模型,以及融合卷积注意力机制的Mask RCNN模型Resnet101-CBAM和VGG19-CBAM对桥小脑角区听神经瘤和脑膜瘤进行检测和病灶分割.并使用均值平均精度(mean average precision,mAP)和均值平均召回率(mean average recall,mAR)评价模型性能.测试集结果显示卷积注意力机制可以提升模型性能,VGG19-CBAM模型在5个模型中综合性能最高,在分类和病灶分割的mAP分别为0.932和0.930.这表明融合注意力机制的Mask RCNN模型对桥小脑角区听神经瘤和脑膜瘤的识别较为理想,可为诊断和靶区勾画提供参考,提高临床工作效率.展开更多
文摘为探讨采用T1WI增强图像,利用融合注意力机制的掩膜区域神经网络(Mask RCNN)模型实现对桥小脑角区听神经瘤和脑膜瘤的识别.本文回顾性收集经病理或临床诊断确诊的脑膜瘤116例和听神经瘤427例,经图像筛选后共采用脑膜瘤872张和听神经瘤2467张.按近似7:1.5:1.5的比例分为训练集、验证集和测试集.对图像进行预处理后,采用以Resnet50、Resnet101和VGG19为主干网络的Mask RCNN模型,以及融合卷积注意力机制的Mask RCNN模型Resnet101-CBAM和VGG19-CBAM对桥小脑角区听神经瘤和脑膜瘤进行检测和病灶分割.并使用均值平均精度(mean average precision,mAP)和均值平均召回率(mean average recall,mAR)评价模型性能.测试集结果显示卷积注意力机制可以提升模型性能,VGG19-CBAM模型在5个模型中综合性能最高,在分类和病灶分割的mAP分别为0.932和0.930.这表明融合注意力机制的Mask RCNN模型对桥小脑角区听神经瘤和脑膜瘤的识别较为理想,可为诊断和靶区勾画提供参考,提高临床工作效率.