期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
The distribution of deep source rocks in the GS Sag:joint MT-gravity modeling and constrained inversion 被引量:6
1
作者 Shi Yan-Ling hu zu-zhi +4 位作者 huang Wen-hui Wei Qiang Zhang Sheng Meng Cui-Xian Ji Lian-Sheng 《Applied Geophysics》 SCIE CSCD 2016年第3期469-479,579,共12页
The coal-bearing strata of the deep Upper Paleozoic in the GS Sag have high hydrocarbon potential. Because of the absence of seismic data, we use electromagnetic (MT) and gravity data jointly to delineate the distri... The coal-bearing strata of the deep Upper Paleozoic in the GS Sag have high hydrocarbon potential. Because of the absence of seismic data, we use electromagnetic (MT) and gravity data jointly to delineate the distribution of deep targets based on well logging and geological data. First, a preliminary geological model is established by using three-dimensional (3D) MT inversion results. Second, using the formation density and gravity anomalies, the preliminary geological model is modified by interactive inversion of the gravity data. Then, we conduct MT-constrained inversion based on the modified model to obtain an optimal geological model until the deviations at all stations are minimized. Finally, the geological model and a seismic profile in the middle of the sag is analysed. We determine that the deep reflections of the seismic profile correspond to the Upper Paleozoic that reaches thickness up to 800 m. The processing of field data suggests that the joint MT-gravity modeling and constrained inversion can reduce the multiple solutions for single geophysical data and thus improve the recognition of deep formations. The MT-constrained inversion is consistent with the geological features in the seismic section. This suggests that the joint MT and gravity modeling and constrained inversion can be used to delineate deep targets in similar basins. 展开更多
关键词 Joint MT-gravity modeling constrained inversion deep target
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部