Oil/gas exploration around the world has extended into deep and ultra-deep strata because it is increasingly difficult to find new large-scale oil/gas reservoirs in shallow–middle buried strata. In recent years, Chin...Oil/gas exploration around the world has extended into deep and ultra-deep strata because it is increasingly difficult to find new large-scale oil/gas reservoirs in shallow–middle buried strata. In recent years, China has made remarkable achievements in oil/gas exploration in ultra-deep areas including carbonate and clastic reservoirs. Some (ultra) large-scale oil and gas fields have been discovered. The oil/gas accumulation mechanisms and key technologies of oil/gas reservoir exploration and development are summarized in this study in order to share China’s experiences. Ultra-deep oil/gas originates from numerous sources of hydrocarbons and multiphase charging. Liquid hydrocarbons can form in ultradeep layers due to low geothermal gradients or overpressures, and the natural gas composition in ultra-deep areas is complicated by the reactions between deep hydrocarbons, water, and rock or by the addition of mantle- or crust-sourced gases. These oils/gases are mainly stored in the original highenergy reef/shoal complexes or in sand body sediments. They usually have high original porosity. Secondary pores are often developed by dissolution, dolomitization, and fracturing in the late stage. The early pores have been preserved by retentive diageneses such as the early charging of hydrocarbons. Oil/gas accumulation in ultra-deep areas generally has the characteristics of near-source accumulation and sustained preservation. The effective exploration and development of ultra-deep oil/gas reservoirs depend on the support of key technologies. Use of the latest technologies such as seismic signal acquisition and processing, low porosity and permeability zone prediction, and gas–water identification has enabled the discovery of ultra-deep oil/gas resources. In addition, advanced technologies for drilling, completion, and oil/gas testing have ensured the effective development of these fields.展开更多
Remaining time prediction of business processes plays an important role in resource scheduling and plan making.The structural features of single process instance and the concurrent running of multiple process instance...Remaining time prediction of business processes plays an important role in resource scheduling and plan making.The structural features of single process instance and the concurrent running of multiple process instances are the main factors that affect the accuracy of the remaining time prediction.Existing prediction methods does not take full advantage of these two aspects into consideration.To address this issue,a new prediction method based on trace representation is proposed.More specifically,we first associate the prefix set generated by the event log to different states of the transition system,and encode the structural features of the prefixes in the state.Then,an annotation containing the feature representation for the prefix and the corresponding remaining time are added to each state to obtain an extended transition system.Next,states in the extended transition system are partitioned by the different lengths of the states,which considers concurrency among multiple process instances.Finally,the long short-term memory(LSTM)deep recurrent neural networks are applied to each partition for predicting the remaining time of new running instances.By extensive experimental evaluation using synthetic event logs and reallife event logs,we show that the proposed method outperforms existing baseline methods.展开更多
An intrauterine adhesion (IUA) is a form of disease that causes the uterine muscle walls to become adhered to each other due to the basal layers of the endometrium being damaged by various factors, thus resulting in...An intrauterine adhesion (IUA) is a form of disease that causes the uterine muscle walls to become adhered to each other due to the basal layers of the endometrium being damaged by various factors, thus resulting in partial or complete occlusion of the uterine cavity.展开更多
A series of breakthroughs have been made in the understanding, evaluation, and exploration of shale gas from discovery, environmental protection to efficient exploration in the discovering of Fuling Gas Field. By reve...A series of breakthroughs have been made in the understanding, evaluation, and exploration of shale gas from discovery, environmental protection to efficient exploration in the discovering of Fuling Gas Field. By revealing the positive correlation between organic carbon content and siliceous mineral content of shale deposited in deep shelf, dynamic preservation mechanism of “early retention and late deformation,”it is clarified that the shales deposited in deep shelf are the most favorable for shale gas generation, storage and fracturing. The preser-ving conditions determine the levels of shale gas accumulation, thus the evaluation concept of taking the quality of the shale as the base and the preserving conditions as key is proposed, the evaluation system for strategic selection of favorable zones is established for marine shale gas exploration in Southern China. Moreover, the “sweet point” seismic forecasting technologies for marine shale gas, the “six properties” logging technologies for evaluating shale gas layers, the technologies for quick and efficient drilling of horizontal well groups, and the fracturing technologies for composite fractures for hor-izontal wells are invented. The paper discussed the exploration prospect of shale gas in the shales of Wufeng-Longmaxi Formation in great depth in Sichuan Basin, shale gas exploration in the outer region of the south, and continental shale gas exploration in China.展开更多
In this article tetrabutylammonium bromide (TBAB) was first added in buffer to compose a convenient and environmentally friendly system, and enzymatic polymerization of phenol catalyzed by horseradish peroxidase (...In this article tetrabutylammonium bromide (TBAB) was first added in buffer to compose a convenient and environmentally friendly system, and enzymatic polymerization of phenol catalyzed by horseradish peroxidase (HRP) could proceed efficiently in this system. When TBAB was added, the most conversion of phenol could reach 99.1%. The phenol polymer was considered to consist of a mixture of phenylene (Ph) and oxyphenylene (Ox) units by IR analysis, and the ratio of phenylene to oxyphenylene units (Ph/Ox) was measured by titration. Moreover, the effects of the dosage of horseradish peroxidase (HRP) and pH value on the conversion of phenol were investigated. The reaction performed very effectively in this novel system when the addition of HRP was only 0.2 mg. In all cases, the weight-average molecular weight calculated by GPC-SLS was in a range from 12000 Da to 30000 Da. The phenol polymer prepared in the present research possessed good thermal stability shown by TG analysis.展开更多
基金the National Science and Technology Major Project (2017ZX05005)the National Natural Science Foundations of China (41672123).
文摘Oil/gas exploration around the world has extended into deep and ultra-deep strata because it is increasingly difficult to find new large-scale oil/gas reservoirs in shallow–middle buried strata. In recent years, China has made remarkable achievements in oil/gas exploration in ultra-deep areas including carbonate and clastic reservoirs. Some (ultra) large-scale oil and gas fields have been discovered. The oil/gas accumulation mechanisms and key technologies of oil/gas reservoir exploration and development are summarized in this study in order to share China’s experiences. Ultra-deep oil/gas originates from numerous sources of hydrocarbons and multiphase charging. Liquid hydrocarbons can form in ultradeep layers due to low geothermal gradients or overpressures, and the natural gas composition in ultra-deep areas is complicated by the reactions between deep hydrocarbons, water, and rock or by the addition of mantle- or crust-sourced gases. These oils/gases are mainly stored in the original highenergy reef/shoal complexes or in sand body sediments. They usually have high original porosity. Secondary pores are often developed by dissolution, dolomitization, and fracturing in the late stage. The early pores have been preserved by retentive diageneses such as the early charging of hydrocarbons. Oil/gas accumulation in ultra-deep areas generally has the characteristics of near-source accumulation and sustained preservation. The effective exploration and development of ultra-deep oil/gas reservoirs depend on the support of key technologies. Use of the latest technologies such as seismic signal acquisition and processing, low porosity and permeability zone prediction, and gas–water identification has enabled the discovery of ultra-deep oil/gas resources. In addition, advanced technologies for drilling, completion, and oil/gas testing have ensured the effective development of these fields.
基金supported by National Natural Science Foundation of China(No.U1931207 and No.61702306)Sci.&Tech.Development Fund of Shandong Province of China(No.ZR2019LZH001,No.ZR2017BF015 and No.ZR2017MF027)+4 种基金the Humanities and Social Science Research Project of the Ministry of Education(No.18YJAZH017)Shandong Chongqing Science and technology cooperation project(No.cstc2020jscx-lyjsAX0008)Sci.&Tech.Development Fund of Qingdao(No.21-1-5-zlyj-1-zc)the Taishan Scholar Program of Shandong ProvinceSDUST Research Fund(No.2015TDJH102 and No.2019KJN024).
文摘Remaining time prediction of business processes plays an important role in resource scheduling and plan making.The structural features of single process instance and the concurrent running of multiple process instances are the main factors that affect the accuracy of the remaining time prediction.Existing prediction methods does not take full advantage of these two aspects into consideration.To address this issue,a new prediction method based on trace representation is proposed.More specifically,we first associate the prefix set generated by the event log to different states of the transition system,and encode the structural features of the prefixes in the state.Then,an annotation containing the feature representation for the prefix and the corresponding remaining time are added to each state to obtain an extended transition system.Next,states in the extended transition system are partitioned by the different lengths of the states,which considers concurrency among multiple process instances.Finally,the long short-term memory(LSTM)deep recurrent neural networks are applied to each partition for predicting the remaining time of new running instances.By extensive experimental evaluation using synthetic event logs and reallife event logs,we show that the proposed method outperforms existing baseline methods.
文摘An intrauterine adhesion (IUA) is a form of disease that causes the uterine muscle walls to become adhered to each other due to the basal layers of the endometrium being damaged by various factors, thus resulting in partial or complete occlusion of the uterine cavity.
文摘A series of breakthroughs have been made in the understanding, evaluation, and exploration of shale gas from discovery, environmental protection to efficient exploration in the discovering of Fuling Gas Field. By revealing the positive correlation between organic carbon content and siliceous mineral content of shale deposited in deep shelf, dynamic preservation mechanism of “early retention and late deformation,”it is clarified that the shales deposited in deep shelf are the most favorable for shale gas generation, storage and fracturing. The preser-ving conditions determine the levels of shale gas accumulation, thus the evaluation concept of taking the quality of the shale as the base and the preserving conditions as key is proposed, the evaluation system for strategic selection of favorable zones is established for marine shale gas exploration in Southern China. Moreover, the “sweet point” seismic forecasting technologies for marine shale gas, the “six properties” logging technologies for evaluating shale gas layers, the technologies for quick and efficient drilling of horizontal well groups, and the fracturing technologies for composite fractures for hor-izontal wells are invented. The paper discussed the exploration prospect of shale gas in the shales of Wufeng-Longmaxi Formation in great depth in Sichuan Basin, shale gas exploration in the outer region of the south, and continental shale gas exploration in China.
基金financially supported by the Natural Science Foundation of Henan Province(No.132300410147)
文摘In this article tetrabutylammonium bromide (TBAB) was first added in buffer to compose a convenient and environmentally friendly system, and enzymatic polymerization of phenol catalyzed by horseradish peroxidase (HRP) could proceed efficiently in this system. When TBAB was added, the most conversion of phenol could reach 99.1%. The phenol polymer was considered to consist of a mixture of phenylene (Ph) and oxyphenylene (Ox) units by IR analysis, and the ratio of phenylene to oxyphenylene units (Ph/Ox) was measured by titration. Moreover, the effects of the dosage of horseradish peroxidase (HRP) and pH value on the conversion of phenol were investigated. The reaction performed very effectively in this novel system when the addition of HRP was only 0.2 mg. In all cases, the weight-average molecular weight calculated by GPC-SLS was in a range from 12000 Da to 30000 Da. The phenol polymer prepared in the present research possessed good thermal stability shown by TG analysis.