A series of Fe-doped (0.5%--3%) sulfated zirconia have been prepared by a hydrothermal treatment-assisted process. Textural and structural characterizations of the as-synthesized materials were performed by means of...A series of Fe-doped (0.5%--3%) sulfated zirconia have been prepared by a hydrothermal treatment-assisted process. Textural and structural characterizations of the as-synthesized materials were performed by means of N2 adsorption, X-ray diffraction, transmission electron microscopy, scanning electron microscopy and thermogravimetric analysis. Temperature-programmed desorption of ammonia was used to determine the acidity of the samples. The effects of Fe-doping on the structure, acidity and catalytic activity of sulfated zirconia for liquid-phase a-pinene isornerization were investigated. The incorporation of small amounts of Fe into sulfated zirconia results in the increase of sulfate content and the number of acid sites, which is responsible for the enhanced activity of Fe-doped catalysts in comparison with the undoped one. Meanwhile, hydrothermal treatment helps to improve the activity of the catalyst.展开更多
基金Project supported by the State Basic Research Project of China (No. 2006CB806103), the National Natural Science Foundation of China (Nos. 20633030, 20773027 and 20773028), Shanghai Research Institute of Petrochemical Technology, and the Science & Technology Commission of Shanghai Municipality (No. 08DZ2270500).
文摘A series of Fe-doped (0.5%--3%) sulfated zirconia have been prepared by a hydrothermal treatment-assisted process. Textural and structural characterizations of the as-synthesized materials were performed by means of N2 adsorption, X-ray diffraction, transmission electron microscopy, scanning electron microscopy and thermogravimetric analysis. Temperature-programmed desorption of ammonia was used to determine the acidity of the samples. The effects of Fe-doping on the structure, acidity and catalytic activity of sulfated zirconia for liquid-phase a-pinene isornerization were investigated. The incorporation of small amounts of Fe into sulfated zirconia results in the increase of sulfate content and the number of acid sites, which is responsible for the enhanced activity of Fe-doped catalysts in comparison with the undoped one. Meanwhile, hydrothermal treatment helps to improve the activity of the catalyst.