期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
混杂纤维人造花岗岩超精密摆线轮成形磨床床身的动静态特性研究 被引量:1
1
作者 乔雪涛 王朋 +3 位作者 许华威 闫存富 吴隆 曹衍龙 《机床与液压》 北大核心 2020年第12期65-71,共7页
利用正交试验法,设计并制作了不同配合比的混杂纤维人造花岗岩试件,并对试件进行了抗压强度测试。利用SolidWorks建立了超精密摆线轮成形磨床三维模型,在ANSYS Workbench平台对相似结构的混杂纤维人造花岗岩、未添加纤维人造花岗岩以及... 利用正交试验法,设计并制作了不同配合比的混杂纤维人造花岗岩试件,并对试件进行了抗压强度测试。利用SolidWorks建立了超精密摆线轮成形磨床三维模型,在ANSYS Workbench平台对相似结构的混杂纤维人造花岗岩、未添加纤维人造花岗岩以及铸铁(HT250)摆线轮成形磨床床身分别进行有限元分析。结果表明:(1)添加混杂纤维可以提高人造花岗岩材料强度;(2)混杂纤维人造花岗岩床身的等效变形最小,等效应力低,床身前5阶固有频率最高。 展开更多
关键词 人造花岗岩 正交试验 混杂纤维 超精密摆线轮成形磨床床身 有限元分析
下载PDF
Engineering a New Chloroplastic Photorespiratory Bypass to In crease Photosynthetic Efficiency and Productivity in Rice 被引量:34
2
作者 Bo-Ran Shen Li-Min Wang +9 位作者 Xiu-Ling Lin Zhen Yao hua-wei xu Cheng-Hua Zhu Hai-Yan Teng Li-Li Cui E.-E. Liu Jian-Jun Zhang Zheng-Hui He Xin-Xiang Peng 《Molecular Plant》 SCIE CAS CSCD 2019年第2期199-214,共16页
Over the past few years, three photorespiratory bypasses have been introduced into plants, two of which led to observable in creases in photos yn thesis and biomass yield. However, most of the experiments were carried... Over the past few years, three photorespiratory bypasses have been introduced into plants, two of which led to observable in creases in photos yn thesis and biomass yield. However, most of the experiments were carried out using Arabidopsis under controlled environmental conditions, and the increases were only observed under low-light and short-day conditions. In this study, we designed a new photorespiratory bypass (called GOC bypass), characterized by no reducing equivalents being produced during a complete oxidation of glycolate into CO2 catalyzed by three rice-self-originating enzymes, i.e., glycolate oxidase, oxalate oxidase, and catalase. We successfully established this bypass in rice chloroplasts using a multi-gene assembly and transformation system. Transgenic rice plants carrying GOC bypass (GOC plants) showed significant increases in photosynthesis efficiency, biomass yield, and nitrogen content, as well as several other CO2-enriched phe no types under both greenhouse and field conditions .Grain yield of GOC plants varied depending on seeding season and was increased significantly in the spring. We further demonstrated that GOC plants had significant advantages under high-light conditions and that the improvements in GOC plants resulted primarily from a photosynthetic CO2-concentrating effect rather than from improved energy balance. Taken together, our results reveal that engineering a newly designed chloroplastic photorespiratory bypass could increase photosynthetic efficiency and yield of rice plants grown in field conditions, particularly under high light. 展开更多
关键词 photorespiratory BYPASS PHOTOSYNTHETIC EFFICIENCY PRODUCTIVITY RICE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部