A novel extrusion approach,entitled slope extrusion(SE),was employed to manufacture AZ31(Mg-3Al-1 Zn,wt%)alloy sheets.The microstructures,textures,and mechanical properties were investigated,compared with those of the...A novel extrusion approach,entitled slope extrusion(SE),was employed to manufacture AZ31(Mg-3Al-1 Zn,wt%)alloy sheets.The microstructures,textures,and mechanical properties were investigated,compared with those of the AZ31 sheet fabricated by conventional extrusion(CE).Through the combination of finite element simulation and actual experiment,the ultimate results indicated that significant grain refinement(from 9.1 to 7.7 and 5.6μm)and strong basal texture(from 12.6 to 17.6 and 19.5 mrd)were achieved by the SE process.The essence was associated with the additional introduced inclined interface in the process of SE,which could bring about more asymmetric deformation and stronger accumulated strain along the ND when compared with the process of CE.As a consequence,the SE sheets exhibited a higher yield strength(YS)and ultimate tensile strength(UTS)than the counterparts of the CE sheet,which was mainly assigned to the synergistic effects from grain refining and texture strengthening.展开更多
The corrosion behavior at open circuit potential(OCP)and discharge properties under applied anodic currents of twoα-Mg based Mg-Li alloys,i.e.,LAZ131 and LAZ531,with different microstructural features for primary Mg-...The corrosion behavior at open circuit potential(OCP)and discharge properties under applied anodic currents of twoα-Mg based Mg-Li alloys,i.e.,LAZ131 and LAZ531,with different microstructural features for primary Mg-air batteries are investigated.The results show that the grain boundaries contribute equally to the corrosion and discharge processes,which are attacked preferentially than the grain interiors and accelerate the dissolution processes ofα-Mg based Mg-Li alloys.The(10-10)/(11-20)orientated grains are attacked preferentially than the(0002)orientated grains on the corrosion and discharge process.The increased corrosion rate and improved discharge properties are attributed to the refinement of grain size,decreased content of(0002)orientated grains and increased content of(10-10)/(11-20)orientated grains.Of those,the LAZ531 alloy possesses high and steady discharge voltage at small discharge current density for long time,with the values of 1.4801 V at 2.5 mA cm^(-2)and 1.3742 V at 10 mA cm^(-2).展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. U1764253, 51971044, 51901204, U1910213 52001037, and U207601)the National Defense Basic Scientific Research Program of China, the Chongqing Science and Technology Commission, China (No.cstc2017zdcy-zdzxX0006)+4 种基金the Chongqing Municipal Education Commission, China (No.KJZDK202001502)the Chongqing Scientific & Technological Talents Program, China (No.KJXX2017002)the Qinghai Scientific & Technological Program, China (No.2018-GXA1)the Zhejiang Provincial Natural Science Foundation, China (No.LGG21E050009)the Research Start-up Funds of Shaoxing University, China (No.20210007)
文摘A novel extrusion approach,entitled slope extrusion(SE),was employed to manufacture AZ31(Mg-3Al-1 Zn,wt%)alloy sheets.The microstructures,textures,and mechanical properties were investigated,compared with those of the AZ31 sheet fabricated by conventional extrusion(CE).Through the combination of finite element simulation and actual experiment,the ultimate results indicated that significant grain refinement(from 9.1 to 7.7 and 5.6μm)and strong basal texture(from 12.6 to 17.6 and 19.5 mrd)were achieved by the SE process.The essence was associated with the additional introduced inclined interface in the process of SE,which could bring about more asymmetric deformation and stronger accumulated strain along the ND when compared with the process of CE.As a consequence,the SE sheets exhibited a higher yield strength(YS)and ultimate tensile strength(UTS)than the counterparts of the CE sheet,which was mainly assigned to the synergistic effects from grain refining and texture strengthening.
基金financially supported by the National Key Research and Development Program of China(Nos.2016YFB0101700 and 2016YFB0301104)the National Natural Science Foundation of China(Nos.51531002,U1764253,and 51971040)+2 种基金the Chongqing Science and Technology Commission(Nos.cstc2017zdcy-zdzx X0006 and cstc2019jscx-mbdxX0031)the Chongqing Scientific&Technological Talents Program(No.KJXX2017002)the Scientific Research Foundation of Chongqing University of Technology。
文摘The corrosion behavior at open circuit potential(OCP)and discharge properties under applied anodic currents of twoα-Mg based Mg-Li alloys,i.e.,LAZ131 and LAZ531,with different microstructural features for primary Mg-air batteries are investigated.The results show that the grain boundaries contribute equally to the corrosion and discharge processes,which are attacked preferentially than the grain interiors and accelerate the dissolution processes ofα-Mg based Mg-Li alloys.The(10-10)/(11-20)orientated grains are attacked preferentially than the(0002)orientated grains on the corrosion and discharge process.The increased corrosion rate and improved discharge properties are attributed to the refinement of grain size,decreased content of(0002)orientated grains and increased content of(10-10)/(11-20)orientated grains.Of those,the LAZ531 alloy possesses high and steady discharge voltage at small discharge current density for long time,with the values of 1.4801 V at 2.5 mA cm^(-2)and 1.3742 V at 10 mA cm^(-2).