期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Designing multi-heterogeneous interfaces of Ni-MoS_(2)@NiS_(2)@Ni_(3)S_(2)hybrid for hydrogen evolution 被引量:2
1
作者 Haoxuan Yu Junan Pan +5 位作者 Yuxin Zhang Longlu Wang huachao ji Keyu Xu Ting Zhi Zechao Zhuang 《Nano Research》 SCIE EI CSCD 2024年第6期4782-4789,共8页
The transition metal chalcogenides represented by MoS_(2)are the ideal choice for non-precious metal-based hydrogen evolution catalysts.However,whether in acidic or alkaline environments,the catalytic activity of pure... The transition metal chalcogenides represented by MoS_(2)are the ideal choice for non-precious metal-based hydrogen evolution catalysts.However,whether in acidic or alkaline environments,the catalytic activity of pure MoS_(2)is still difficult to compete with Pt.Recent studies have shown that the electronic structure of materials can be adjusted by constructing lattice-matched heterojunctions,thus optimizing the adsorption free energy of intermediates in the catalytic hydrogen production process of materials,so as to effectively improve the electrocatalytic hydrogen production activity of catalysts.However,it is still a great challenge to prepare heterojunctions with lattice-matched structures as efficient electrocatalytic hydrogen production catalysts.Herein,we developed a one-step hydrothermal method to construct Ni-MoS_(2)@NiS_(2)@Ni_(3)S_(2)(Ni-MoS_(2)on behalf of Ni doping MoS_(2))electrocatalyst with multiple heterogeneous interfaces which possesses rich catalytic reaction sites.The Ni-MoS_(2)@NiS_(2)@Ni_(3)S_(2)electrocatalyst produced an extremely low overpotential of 69.4 mV with 10 mA·cm^(−2)current density for hydrogen evolution reaction(HER)in 1.0 M KOH.This work provides valuable enlightenment for exploring the mechanism of HER enhancement to optimize the surface electronic structure of MoS_(2),and provides an effective idea for constructing rare metal catalysts in HER and other fields. 展开更多
关键词 MoS_(2) HETEROJUNCTIONS multiple heterogeneous interfaces hydrogen evolution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部