Our previous experiment revealed that apex-removed plants have larger root systems but a lower K+-uptake rates than intact tobacco plants. Since the apex is not only a center of growth and metabolism, but also an imp...Our previous experiment revealed that apex-removed plants have larger root systems but a lower K+-uptake rates than intact tobacco plants. Since the apex is not only a center of growth and metabolism, but also an important place of auxin synthesis and export, the aims of this study were to distinguish whether the apex demand or auxin synthesized in the apex regulates assimilate and nutrients partitioning within plant, and to explain the reason for the lower K+-uptake rate of the apex-removed plant. In comparison with the control plant, covering the shoot apex with a black transparent plastic bag reduced net increases in dry matter and nutrients; however, the distribution of the dry matter and nutrients between shoot and roots and nutrient-uptake rates were not changed. Removal of the shoot apex shifted the dry mass and nutrients distributions to roots, and reduced the rate of nutrient uptake. Application of 1-naphthylacetic acid (NAA) could partly replace the role of the removed apex, stimulated assimilate and nutrient deposition into the treated tissue, and enhanced the reduced plasma membrane ATPase activity of roots to the control level. However, treatment of the apex-removed plants with NAA could not rescue the reduced nutrient uptake rate and the shifted assimilates and nutrients partitioning caused by excision of the apex. Higher nutrient uptake rate of the intact plants could not be explained by root growth parameters, such as total root surface area and number of root tips. The results from the present study indicate that strong apex demand determined assimilates and nutrients partitioning and nutrient-uptake rate in tobacco (Nicotiana tabacum) plants.展开更多
基金Supported by the National Natural Science Foundation of China(30070452,30370842)the Ministry of Agriculture 948 Program(2003-Z53).
文摘Our previous experiment revealed that apex-removed plants have larger root systems but a lower K+-uptake rates than intact tobacco plants. Since the apex is not only a center of growth and metabolism, but also an important place of auxin synthesis and export, the aims of this study were to distinguish whether the apex demand or auxin synthesized in the apex regulates assimilate and nutrients partitioning within plant, and to explain the reason for the lower K+-uptake rate of the apex-removed plant. In comparison with the control plant, covering the shoot apex with a black transparent plastic bag reduced net increases in dry matter and nutrients; however, the distribution of the dry matter and nutrients between shoot and roots and nutrient-uptake rates were not changed. Removal of the shoot apex shifted the dry mass and nutrients distributions to roots, and reduced the rate of nutrient uptake. Application of 1-naphthylacetic acid (NAA) could partly replace the role of the removed apex, stimulated assimilate and nutrient deposition into the treated tissue, and enhanced the reduced plasma membrane ATPase activity of roots to the control level. However, treatment of the apex-removed plants with NAA could not rescue the reduced nutrient uptake rate and the shifted assimilates and nutrients partitioning caused by excision of the apex. Higher nutrient uptake rate of the intact plants could not be explained by root growth parameters, such as total root surface area and number of root tips. The results from the present study indicate that strong apex demand determined assimilates and nutrients partitioning and nutrient-uptake rate in tobacco (Nicotiana tabacum) plants.