期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
1
作者 Xi-Ming Chen Bang-Bing Shi +6 位作者 Xuan Li huai-yun fan Chen-Zhan Li Xiao-Chuan Deng Hai-Hui Luo Yu-Dong Wu Bo Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第4期610-615,共6页
In order to investigate the characteristics and mechanisms of subthreshold voltage hysteresis(ΔV_(th,sub)) of 4 H-SiC metal-oxide-semiconductor field-effect transistors(MOSFETs),4 H-SiC planar and trench MOSFETs and ... In order to investigate the characteristics and mechanisms of subthreshold voltage hysteresis(ΔV_(th,sub)) of 4 H-SiC metal-oxide-semiconductor field-effect transistors(MOSFETs),4 H-SiC planar and trench MOSFETs and corresponding P-type planar and trench metal-oxide-semiconductor(MOS) capacitors are fabricated and characterized.Compared with planar MOSFEF,the trench MOSFET shows hardly larger ΔV_(th,sub) in wide temperature range from 25 0 C to 300 0 C.When operating temperature range is from 25 ℃ to 300 ℃,the off-state negative V_(gs) of planar and trench MOSFETs should be safely above-4 V and-2 V,respectively,to alleviate the effect of ΔV_(th,sub) on the normal operation.With the help of P-type planar and trench MOS capacitors,it is confirmed that the obvious ΔV_(th,sub) of 4 H-SiC MOSFET originates from the high density of the hole interface traps between intrinsic Fermi energy level(E_(i)) and valence band(E_(v)).The maximumΔV_(th,sub) of trench MOSFET is about twelve times larger than that of planar MOSFET,owing to higher density of interface states(D_(it)) between E_(i) and E_(v).These research results will be very helpful for the application of 4 H-SiC MOSFET and the improvement of ΔV_(th,sub) of 4 H-SiC MOSFET,especially in 4 H-SiC trench MOSFET. 展开更多
关键词 4H-SiC MOSFET subthreshold voltage hysteresis P-type MOS capacitor density of interface states
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部