期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A V_(2)O_(3)@N-C cathode material for aqueous zinc-ion batteries with boosted zinc-ion storage performance 被引量:3
1
作者 huai-zheng ren Jian Zhang +6 位作者 Bo Wang Hao Luo Fan Jin Tian-ren Zhang An Ding Bo-Wen Cong Dian-Long Wang 《Rare Metals》 SCIE EI CAS CSCD 2022年第5期1605-1615,共11页
The discontinuity of new types of clean energy,such as wind power and solar cells, has promoted the development of large-scale energy storage systems(EES).Rechargeable aqueous zinc-ion batteries(ZIBs) have received ex... The discontinuity of new types of clean energy,such as wind power and solar cells, has promoted the development of large-scale energy storage systems(EES).Rechargeable aqueous zinc-ion batteries(ZIBs) have received extensive attention due to their inherent safety and low cost. At this stage, the performance of ZIBs is still limited by cathode materials. In this work, we have constructed a ZIBs cathode material-V_(2)O_(3)@N–C, through surface coating and N atom doping. The N-doped carbon coating endows V_(2)O_(3)@N–C with excellent structural stability and enhances its electrical conductivity. As a result,V_(2)O_(3)@N–C cathode delivers exceptional reversible of Zn^(2+) intercalation/deintercalation. The fabricated Zn/V_(2)O_(3)@N–C batteries exhibit high capacity of 274.6 mAh·g^(-1) at 5 A·g^(-1) and excellent capacity retention of 94% after 2000 cycles. The reversible intercalation/deintercalation of Zn^(2+) in the V_(2)O_(3)@N–C cathode is proved by ex-situ testing methods. It is believed that this work should inject new vitality into the development of ZIBs cathode. 展开更多
关键词 Zinc-ion batteries V_(2)O_(3)@N-C cathode Structural design Carbon layer N atom doping
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部