The discontinuity of new types of clean energy,such as wind power and solar cells, has promoted the development of large-scale energy storage systems(EES).Rechargeable aqueous zinc-ion batteries(ZIBs) have received ex...The discontinuity of new types of clean energy,such as wind power and solar cells, has promoted the development of large-scale energy storage systems(EES).Rechargeable aqueous zinc-ion batteries(ZIBs) have received extensive attention due to their inherent safety and low cost. At this stage, the performance of ZIBs is still limited by cathode materials. In this work, we have constructed a ZIBs cathode material-V_(2)O_(3)@N–C, through surface coating and N atom doping. The N-doped carbon coating endows V_(2)O_(3)@N–C with excellent structural stability and enhances its electrical conductivity. As a result,V_(2)O_(3)@N–C cathode delivers exceptional reversible of Zn^(2+) intercalation/deintercalation. The fabricated Zn/V_(2)O_(3)@N–C batteries exhibit high capacity of 274.6 mAh·g^(-1) at 5 A·g^(-1) and excellent capacity retention of 94% after 2000 cycles. The reversible intercalation/deintercalation of Zn^(2+) in the V_(2)O_(3)@N–C cathode is proved by ex-situ testing methods. It is believed that this work should inject new vitality into the development of ZIBs cathode.展开更多
基金the National Natural Science Foundation of China(Nos.51874110 and 51604089)the Natural Science Foundation of Heilongjiang Province(No.YQ2021B004)the Open Project of State Key Laboratory of Urban Water Resource and Environment(No.QA202138)。
文摘The discontinuity of new types of clean energy,such as wind power and solar cells, has promoted the development of large-scale energy storage systems(EES).Rechargeable aqueous zinc-ion batteries(ZIBs) have received extensive attention due to their inherent safety and low cost. At this stage, the performance of ZIBs is still limited by cathode materials. In this work, we have constructed a ZIBs cathode material-V_(2)O_(3)@N–C, through surface coating and N atom doping. The N-doped carbon coating endows V_(2)O_(3)@N–C with excellent structural stability and enhances its electrical conductivity. As a result,V_(2)O_(3)@N–C cathode delivers exceptional reversible of Zn^(2+) intercalation/deintercalation. The fabricated Zn/V_(2)O_(3)@N–C batteries exhibit high capacity of 274.6 mAh·g^(-1) at 5 A·g^(-1) and excellent capacity retention of 94% after 2000 cycles. The reversible intercalation/deintercalation of Zn^(2+) in the V_(2)O_(3)@N–C cathode is proved by ex-situ testing methods. It is believed that this work should inject new vitality into the development of ZIBs cathode.