In this paper, we study the evolution of hypersurface moving by the mean curvature minus an external force field. It is shown that the flow will blow up in a finite time if the mean curvature of the initial surface is...In this paper, we study the evolution of hypersurface moving by the mean curvature minus an external force field. It is shown that the flow will blow up in a finite time if the mean curvature of the initial surface is larger than some constant depending on the boundness of derivatives of the external force field. For a linear force, we prove that the convexity of the hypersurface is preserved during the evolution and the flow has a unique smooth solution in any finite time and expands to infinity as the time tends to infinity if the initial curvature is smaller than the slope of the force.展开更多
基金This work was partially supported by the National Natural Science Foundation of China (Grant No. 10631020)Basic Research Grant of Tsinghua University (Grant No. JCJC2005071).
文摘In this paper, we study the evolution of hypersurface moving by the mean curvature minus an external force field. It is shown that the flow will blow up in a finite time if the mean curvature of the initial surface is larger than some constant depending on the boundness of derivatives of the external force field. For a linear force, we prove that the convexity of the hypersurface is preserved during the evolution and the flow has a unique smooth solution in any finite time and expands to infinity as the time tends to infinity if the initial curvature is smaller than the slope of the force.