期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Study on friction performance and mechanism of slipper pair under different paired materials in high-pressure axial piston pump 被引量:5
1
作者 huaichao wu Limei ZHAO +1 位作者 Siliang NI Yongyong HE 《Friction》 SCIE CSCD 2020年第5期957-969,共13页
High-pressure axial piston pumps operate in high-speed and high-pressure environments. The contact state of the slipper against the swashplate can easily change from an oil film lubrication to a mixed oil film/asperit... High-pressure axial piston pumps operate in high-speed and high-pressure environments. The contact state of the slipper against the swashplate can easily change from an oil film lubrication to a mixed oil film/asperity contact, or even dry friction. To improve the dry friction performance of slipper pairs and to avoid their potentially rapid failure, this study examined the effects of material matching on the dry friction performance of the slipper pair for high-pressure axial piston pumps. A FAIAX6 friction and wear tester was developed, and the dry friction coefficients of the slipper pairs matched with different materials were studied using this tester. Based on the thermo-mechanical coupling of the slipper pair with the working process, the contact surface temperatures of the slipper pairs matched with different materials were calculated and analyzed for the same working conditions. Following this, the effects of the material properties on the temperature increase at the slipper sliding contact surfaces were revealed. The reliabilities of the temperature calculations and analysis results were verified through orthogonal tests of slipper pairs matched with different materials. The results indicate that the influence of the material density on the friction coefficient is greater than that of the Poisson's ratio or the elastic modulus, and that the slipper material chosen should have a high thermal conductivity, low density, and low specific heat, whereas the swashplate material should be high in specific heat, density, and thermal conductivity;in addition, the slipper pair should be a type of hard material to match the type of soft material applied;that is, the hardness of the swashplate material should be greater than that of the slipper material. 展开更多
关键词 axial piston pump slipper pair material matching dry friction TEMPERATURE
原文传递
Tribological properties of novel palygorskite nanoplatelets used as oil-based lubricant additives 被引量:4
2
作者 Kunpeng WANG huaichao wu +3 位作者 Hongdong WANG Yuhong LIU Lv YANG Limei ZHAO 《Friction》 SCIE EI CAS CSCD 2021年第2期332-343,共12页
Layered palygorskite(PAL),commonly called attapulgite,is a natural inorganic clay mineral composed of magnesium silicate.In this study,an aqueous miscible organic solvent treatment method is adopted to prepare molybde... Layered palygorskite(PAL),commonly called attapulgite,is a natural inorganic clay mineral composed of magnesium silicate.In this study,an aqueous miscible organic solvent treatment method is adopted to prepare molybdenum-dotted palygorskite(Amo-PMo)nanoplatelets,which greatly improved the specific surface area of PAL and the dispersion effect in an oil-based lubricant system.Their layered structure and size were confirmed using transmission electron microscopy(TEM)and atomic force microscopy.Following a tribological test lubricated with three additives(PAL,organic molybdenum(SN-Mo),and Amo-PMo),it was found that the sample of 0.5 wt%Amo-PMo exhibited the best tribological properties with a coefficient of friction of 0.09.Moreover,the resulting wear scar diameter and wear volume of the sliding ball surface were 63%and 49.6%of those lubricated with base oil,respectively.Its excellent lubricating performance and self-repairing ability were mainly attributed to the generated MoS2 adsorbed on the contact surfaces during the tribochemical reaction,thereby effectively preventing the direct collision between asperities on sliding solid surfaces.Thus,as-prepared Amo-PMo nanoplatelets show great potential as oil-based lubricant additives,and this study enriches the existing application of PAL in industry. 展开更多
关键词 palygorskite(PAL) layered material lubricant additive wear TRIBOFILM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部