Because of the wide selectivity of ferromagnetic and ferroelectric(FE)components,electric-field(E-field)control of magnetism via strain mediation can be easily realized through composite multiferroic heterostructures....Because of the wide selectivity of ferromagnetic and ferroelectric(FE)components,electric-field(E-field)control of magnetism via strain mediation can be easily realized through composite multiferroic heterostructures.Here,an MgO-based magnetic tunnel junction(MTJ)is chosen rationally as the ferromagnetic constitution and a high-activity(001)-Pb(Mg_(1/3)Nb_(2/3))_(0.7)Ti_(0.3)O_(3)(PMN-0.3PT)single crystal is selected as the FE component to create a multiferroic MTJ/FE hybrid structure.The shape of tunneling magnetoresistance(TMR)versus in situ E-fields imprints the butterfly loop of the piezo-strain of the FE without magnetic-field bias.The E-field-controlled change in the TMR ratio is up to-0.27%without magnetic-field bias.Moreover,when a typical magnetic field(~±10 Oe)is applied along the minor axis of the MTJ,the butterfly loop is changed significantly by the E-fields relative to that without magnetic-field bias.This suggests that the E-field-controlled junction resistance is spin-dependent and correlated with magnetization switching in the free layer of the MTJ.In addition,based on such a multiferroic heterostructure,a strain-gauge factor up to approximately 40 is achieved,which decreases further with a sign change from positive to negative with increasing magnetic fields.This multiferroic hybrid structure is a promising avenue to control TMR through E-fields in low-power-consumption spintronic and straintronic devices at room temperature.展开更多
Optical control of exotic properties in strongly correlated electron materials is very attractive owing to their potential applications in optical and electronic devices.Herein,we demonstrate a vertical heterojunction...Optical control of exotic properties in strongly correlated electron materials is very attractive owing to their potential applications in optical and electronic devices.Herein,we demonstrate a vertical heterojunction made of a correlated electron oxide thin film VO_(2) and a conductive 0.05 wt% Nb-doped TiO_(2) single crystal,whose metal-insulator transition(MIT)across the nanoscale heterointerface can be efficiently modulated by visible light irradiation.The magnitude of the MIT decreases from ~350 in the dark state to ~7 in the illuminated state,obeying a power law with respect to the light power density.The junction resistance is switched in a reversible and synchronous manner by turning light on and off.The optical tunability of it is also exponentially proportional to the light power density,and a 320-fold on/off ratio is achieved with an irradiance of 65.6 mW cm^(-2) below the MIT temperature.While the VO_(2) thin film is metallic above the MIT temperature,the optical tunability is remarkably weakened,with a one-fold change remaining under light illumination.These results are co-attributed to a net reduction(~15 meV)in the apparent barrier height and the photocarrier-injection-induced metallization of the VO_(2) heterointerface through a photovoltaic effect,which is induced by deep defect level transition upon the visible light irradiance at low temperature.Additionally,the optical tunability is minimal,resulting from the quite weak modulation of the already metallic band structure in the Schottky-type junction above the MIT temperature.This work enables a remotely optical scheme to manipulate the MIT,implying potential uncooled photodetection and photoswitch applications.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52072102 and 11775224)It was also partially funded through the Open Foundation of the Hefei National Laboratory for Physical Sciences at the Microscale(Grant No.KF2020002).
文摘Because of the wide selectivity of ferromagnetic and ferroelectric(FE)components,electric-field(E-field)control of magnetism via strain mediation can be easily realized through composite multiferroic heterostructures.Here,an MgO-based magnetic tunnel junction(MTJ)is chosen rationally as the ferromagnetic constitution and a high-activity(001)-Pb(Mg_(1/3)Nb_(2/3))_(0.7)Ti_(0.3)O_(3)(PMN-0.3PT)single crystal is selected as the FE component to create a multiferroic MTJ/FE hybrid structure.The shape of tunneling magnetoresistance(TMR)versus in situ E-fields imprints the butterfly loop of the piezo-strain of the FE without magnetic-field bias.The E-field-controlled change in the TMR ratio is up to-0.27%without magnetic-field bias.Moreover,when a typical magnetic field(~±10 Oe)is applied along the minor axis of the MTJ,the butterfly loop is changed significantly by the E-fields relative to that without magnetic-field bias.This suggests that the E-field-controlled junction resistance is spin-dependent and correlated with magnetization switching in the free layer of the MTJ.In addition,based on such a multiferroic heterostructure,a strain-gauge factor up to approximately 40 is achieved,which decreases further with a sign change from positive to negative with increasing magnetic fields.This multiferroic hybrid structure is a promising avenue to control TMR through E-fields in low-power-consumption spintronic and straintronic devices at room temperature.
基金supported by the Fundamental Research Funds for the Central Universities(108-4115100092)the National Key Research and Development Program of China(2016YFA0300102 and 2017YFA0205004)+2 种基金the National Natural Science Foundation of China(11775224,11504358,11804324 and 52072102)the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology(2018CXFX001)the Natural Science Research Projects for the Colleges and Universities of Anhui Province(KJ2018A0660)。
文摘Optical control of exotic properties in strongly correlated electron materials is very attractive owing to their potential applications in optical and electronic devices.Herein,we demonstrate a vertical heterojunction made of a correlated electron oxide thin film VO_(2) and a conductive 0.05 wt% Nb-doped TiO_(2) single crystal,whose metal-insulator transition(MIT)across the nanoscale heterointerface can be efficiently modulated by visible light irradiation.The magnitude of the MIT decreases from ~350 in the dark state to ~7 in the illuminated state,obeying a power law with respect to the light power density.The junction resistance is switched in a reversible and synchronous manner by turning light on and off.The optical tunability of it is also exponentially proportional to the light power density,and a 320-fold on/off ratio is achieved with an irradiance of 65.6 mW cm^(-2) below the MIT temperature.While the VO_(2) thin film is metallic above the MIT temperature,the optical tunability is remarkably weakened,with a one-fold change remaining under light illumination.These results are co-attributed to a net reduction(~15 meV)in the apparent barrier height and the photocarrier-injection-induced metallization of the VO_(2) heterointerface through a photovoltaic effect,which is induced by deep defect level transition upon the visible light irradiance at low temperature.Additionally,the optical tunability is minimal,resulting from the quite weak modulation of the already metallic band structure in the Schottky-type junction above the MIT temperature.This work enables a remotely optical scheme to manipulate the MIT,implying potential uncooled photodetection and photoswitch applications.