Reactive oxygen species(ROS)are essential in various pathological and physiological processes.Developing nanosystems that generate ROS in a controlled manner is of great interest for nanomedicine.DNA nanotechnology of...Reactive oxygen species(ROS)are essential in various pathological and physiological processes.Developing nanosystems that generate ROS in a controlled manner is of great interest for nanomedicine.DNA nanotechnology offers a promising approach to constructing programmable ROS-generating platforms.By incorporating photosensitizers or metal ions,DNA nanostructures can be designed to produce ROS in a spatially and temporally desired fashion.DNA-based ROS-generating nanosystems hold great potential in intracellular homeostasis regulation,drug release,and cancer therapy.This review summarizes recent advances in developing DNA-based ROS-generating nanosystems,highlights their emerging biomedical applications,and discusses the opportunities and challenges for further applications.DNA nanotechnology provides a versatile toolkit to construct biocompatible ROS-generating platforms for next-generation nanomedicines.展开更多
基金financial support provided by the National Key R&D Program of China(No.2022YFC2603800)the National Natural Science Foundation of China(No.22274113)。
文摘Reactive oxygen species(ROS)are essential in various pathological and physiological processes.Developing nanosystems that generate ROS in a controlled manner is of great interest for nanomedicine.DNA nanotechnology offers a promising approach to constructing programmable ROS-generating platforms.By incorporating photosensitizers or metal ions,DNA nanostructures can be designed to produce ROS in a spatially and temporally desired fashion.DNA-based ROS-generating nanosystems hold great potential in intracellular homeostasis regulation,drug release,and cancer therapy.This review summarizes recent advances in developing DNA-based ROS-generating nanosystems,highlights their emerging biomedical applications,and discusses the opportunities and challenges for further applications.DNA nanotechnology provides a versatile toolkit to construct biocompatible ROS-generating platforms for next-generation nanomedicines.