期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Achieving a novel solvent-free regeneration of LiBH_(4) combining hydrogen storage and production in a closed material cycle
1
作者 Kang Chen Hao Zhong +5 位作者 Liuzhang Ouyang Fen Liu Hui Wang Jiangwen Liu huaiyu shao Min Zhu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1697-1708,共12页
LiBH_(4) has been considered as one of the most promising energy storage materials with its ultrahigh hydrogen capacity,which can supply hydrogen through hydrolysis process or realize hydrogen-to-electricity conversio... LiBH_(4) has been considered as one of the most promising energy storage materials with its ultrahigh hydrogen capacity,which can supply hydrogen through hydrolysis process or realize hydrogen-to-electricity conversion via anodic oxidation reaction of direct borohydride fuel cells(DBFCs).However,the realization of practical hydrogen applications heavily depends on the effective synthesis of high-purity LiBH_(4) and recycling of the spent fuels(LiBO_(2)·xH_(2)O).The present work demonstrates a convenient and high-efficiency solvent-free strategy for regenerating LiBH_(4) with a maximum yield close to 80%,by retrieving its by-products with MgH_(2) as a reducing agent under ambient conditions.Besides,the hydrogen released from the regeneration course can completely compensate the demand for consumed MgH_(2).The isotopic tracer method reveals that the hydrogen stored in LiBH_(4) comes from both MgH_(2) and coordinated water bound to LiBO_(2).Here,the expensive MgH_(2) can be substituted with the readily available and cost-effective MgH_(2)-Mg mixtures to simplify the regeneration route.Notably,LiBH_(4) catalyzed by CoCl_(2) can stably supply hydrogen to proton exchange membrane fuel cell(PEMFC),thus powering a portable prototype vehicle.By combining hydrogen storage,production and utilization in a closed cycle,this work offers new insights into deploying boron-based hydrides for energy applications. 展开更多
关键词 Lithium borohydride High-energy ball milling REGENERATION Hydrogen production Proton exchange membrane fuel cell
下载PDF
Ambient Fast Synthesis of Superaerophobic/Superhydrophilic Electrode for Superior Electrocatalytic Water Oxidation
2
作者 Jingjun Shen Jing Li +8 位作者 Bo Li Yun Zheng Xiaozhi Bao Junpo Guo Yan Guo Chenglong Lai Wen Lei Shuangyin Wang huaiyu shao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期356-363,共8页
Developing cost-effective and facile methods to synthesize efficient and stable electrocatalysts for large-scale water splitting is highly desirable but remains a significant challenge.In this study,a facile ambient t... Developing cost-effective and facile methods to synthesize efficient and stable electrocatalysts for large-scale water splitting is highly desirable but remains a significant challenge.In this study,a facile ambient temperature synthesis of hierarchical nickel-iron(oxy)hydroxides nanosheets on iron foam(FF-FN)with both superhydrophilicity and superaerophobicity is reported.Specifically,the as-fabricated FF-FN electrode demonstrates extraordinary oxygen evolution reaction(OER)activity with an ultralow overpotential of 195 mV at 10 mA cm^(-2)and a small Tafel slope of 34 mV dec^(-1)in alkaline media.Further theoretical investigation indicates that the involved lattice oxygen in nickel-iron-based-oxyhydroxide during electrochemical self-reconstruction can significantly reduce the OER reaction overpotential via the dominated lattice oxygen mechanism.The rechargeable Zn-air battery assembled by directly using the as-prepared FF-FN as cathode displays remarkable cycling performance.It is believed that this work affords an economical approach to steer commercial Fe foam into robust electrocatalysts for sustainable energy conversion and storage systems. 展开更多
关键词 ELECTROCATALYSIS oxygen evolution reaction oxyhydroxide superaerophobicity SUPERHYDROPHILICITY
下载PDF
Functional Janus Membranes:Promising Platform for Advanced Lithium Batteries and Beyond
3
作者 Dan Chan Yunfei Liu +9 位作者 You Fan Huibo Wang Shi Chen Tianwei Hao Heng Li Zhengshuai Bai huaiyu shao Guichuan Xing Yanyan Zhang Yuxin Tang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期142-158,共17页
Separators or electrolyte membranes are recognized as the key components to guarantee ion transport in rechargeable batteries.However,the ever-growing applications of the battery systems for diverse working environmen... Separators or electrolyte membranes are recognized as the key components to guarantee ion transport in rechargeable batteries.However,the ever-growing applications of the battery systems for diverse working environments bring new challenges,which require advanced battery membranes with high thermal stability,excellent mechanical strength,high voltage tolerance,etc.Therefore,it is highly desirable to design novel methods/concepts to solve the current challenges for battery membranes through understanding the mechanism of novel phenomena and electrochemical reactions in battery systems working under unconventional conditions.Recently,the new emerging Janus separators or electrolyte membranes with two or more distinct chemical/physical properties arising from their asymmetric structure and composition,are promising to address the above challenges via rational design of their targeted functionalities.To this end,in this review,we first briefly cover the current challenges of the traditional battery membrane for battery devices working in unconventional conditions.Then,the state-of-art developments of the rational design of Janus membranes to overcome the above challenges for diverse battery applications are summarized.Finally,we outline these latest developments,challenges,and future potential directions of the Janus membrane.Our review is aimed to provide basic guidance for developing functional separators or electrolyte membranes for advanced batteries. 展开更多
关键词 BATTERIES Janus membranes SEPARATORS solid-state electrolytes
下载PDF
Kinetics in Mg-based hydrogen storage materials:Enhancement and mechanism 被引量:23
4
作者 Qun Luo Jianding Li +3 位作者 Bo Li Bin Liu huaiyu shao Qian Li 《Journal of Magnesium and Alloys》 SCIE EI CAS 2019年第1期58-71,共14页
Mg-based materials have been intensively studied for hydrogen storage applications due to their high energy density up to 2600 Wh/kg or 3700 Wh/L.However,the Mg-based materials with poor kinetics and the necessity for... Mg-based materials have been intensively studied for hydrogen storage applications due to their high energy density up to 2600 Wh/kg or 3700 Wh/L.However,the Mg-based materials with poor kinetics and the necessity for a high temperature to achieve 0.1 MPa hydrogen equilibrium pressure limit the applications in the onboard storage in Fuel cell vehicles(FCVs).Over the past decades,many methods have been applied to improve the hydriding/dehydriding(H/D)kinetics of Mg/MgH 2 by forming amorphous or nanosized particles,adding catalysts and employing external energy field,etc.However,which method is more effective and the intrinsic mechanism they work are widely differing versions.The hydrogenation and dehydrogenation behaviors of Mg-based alloys analyzing by kinetic models is an efficient way to reveal the H/D kinetic mechanism.However,some recently proposed models with physical meaning and simple analysis method are not known intimately by researchers.Therefore,this review focuses on the enhancement method of kinetics in Mg-based hydrogen storage materials and introduces the new kinetic models. 展开更多
关键词 Magnesium alloys Hydrogen storage materials Hydriding/dehydriding reactions KINETICS
下载PDF
Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications 被引量:5
5
作者 Qingdong Ou Xiaozhi Bao +5 位作者 Yinan Zhang huaiyu shao Guichuan Xing Xiangping Li Liyang shao Qiaoliang Bao 《Nano Materials Science》 CAS 2019年第4期268-287,共20页
Metal halide perovskite nanostructures have emerged as low-dimensional semiconductors of great significance in many fields such as photovoltaics,photonics,and optoelectronics.Extensive efforts on the controlled synthe... Metal halide perovskite nanostructures have emerged as low-dimensional semiconductors of great significance in many fields such as photovoltaics,photonics,and optoelectronics.Extensive efforts on the controlled synthesis of perovskite nanostructures have been made towards potential device applications.The engineering of their band structures holds great promise in the rational tuning of the electronic and optical properties of perovskite nanostructures,which is one of the keys to achieving efficient and multifunctional optoelectronic devices.In this article,we summarize recent advances in band structure engineering of perovskite nanostructures.A survey of bandgap engineering of nanostructured perovskites is firstly presented from the aspects of dimensionality tailoring,compositional substitution,phase segregation and transition,as well as strain and pressure stimuli.The strategies of electronic doping are then reviewed,including defect-induced self-doping,inorganic or organic molecules-based chemical doping,and modification by metal ions or nanostructures.Based on the bandgap engineering and electronic doping,discussions on engineering energy band alignments in perovskite nanostructures are provided for building high-performance perovskite p-n junctions and heterostructures.At last,we provide our perspectives in engineering band structures of perovskite nanostructures towards future low-energy optoelectronics technologies. 展开更多
关键词 Band structure engineering Perovskite nanostructures Optoelectronic applications Doping Heterostructures
下载PDF
Progress and perspectives on electrospinning techniques for solid-state lithium batteries 被引量:3
6
作者 Wen Lei Heng Li +1 位作者 Yuxin Tang huaiyu shao 《Carbon Energy》 SCIE CAS 2022年第4期539-575,共37页
Abstract Solid-state electrolytes(SSEs),being the key component of solid-state lithium batteries,have a significant impact on battery performance.Rational materials structure and composition engineering on SSEs are pr... Abstract Solid-state electrolytes(SSEs),being the key component of solid-state lithium batteries,have a significant impact on battery performance.Rational materials structure and composition engineering on SSEs are promising to improve their Li+conductivity,interfacial contact,and mechanical integrity.Among the fabrication approaches,the electrospinning technique has attracted tremendous attention due to its own merits in constructing a three-dimensional framework of SSEs with precise porosity structure,tunable materials composition,easy operation,and superior physicochemical properties.To this end,in this review,we provide a comprehensive summary of the recent development of electrospinning techniques for high-performance SSEs.Firstly,we introduce the historical development of SSEs and summarize the fundamentals,including the Li+transport mechanism and materials selection principle.Then,the versatility of electrospinning technologies in the construction of the three main types of SSEs and stabilization of lithium metal anodes is comprehensively discussed.Finally,a perspective on future research directions based on previous work is highlighted for developing high-performance solid-state lithium batteries based on electrospinning techniques. 展开更多
关键词 ELECTROSPINNING lithium metal anode NANOFIBERS solid-state batteries
下载PDF
Gas Generation Mechanism in Li-Metal Batteries 被引量:2
7
作者 Huajun Zhao Jun Wang +2 位作者 huaiyu shao Kang Xu Yonghong Deng 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第1期327-336,共10页
Gas generation induced by parasitic reactions in lithium-metal batteries(LMB)has been regarded as one of the fundamental barriers to the reversibility of this battery chemistry,which occurs via the complex interplays ... Gas generation induced by parasitic reactions in lithium-metal batteries(LMB)has been regarded as one of the fundamental barriers to the reversibility of this battery chemistry,which occurs via the complex interplays among electrolytes,cathode,anode,and the decomposition species that travel across the cell.In this work,a novel in situ differential electrochemical mass spectrometry is constructed to differentiate the speciation and source of each gas product generated either during cycling or during storage in the presence of cathode chemistries of varying structure and nickel contents.It unambiguously excludes the trace moisture in electrolyte as the major source of hydrogen and convincingly identifies the layer-structured NCM cathode material as the source of instability that releases active oxygen from the lattice at high voltages when NCM experiences H2→H3 phase transition,which in turn reacts with carbonate solvents,producing both CO_(2)and proton at the cathode side.Such proton in solvated state travels across the cell and becomes the main source for hydrogen generated at the anode side.Mechanisms are proposed to account for these irreversible reactions,and two electrolyte additives based on phosphate structure are adopted to mitigate the gas generation based on the understanding of the above decomposition chemistries. 展开更多
关键词 differential electrochemical mass spectrometry gas evolution lithium metal lithium nickel cobalt manganese oxide oxygen release
下载PDF
Enhanced hydrogen generation from hydrolysis of MgLi doped with expanded graphite
8
作者 Kang Chen Jun Jiang +4 位作者 Liuzhang Ouyang Hui Wang Jiangwen Liu huaiyu shao Min Zhu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期2185-2193,共9页
Hydrolysis of Mg-based materials is considered as a potential means of safe and convenient real-time control of H_(2)release,enabling efficient loading,discharge and utilization of hydrogen in portable electronic devi... Hydrolysis of Mg-based materials is considered as a potential means of safe and convenient real-time control of H_(2)release,enabling efficient loading,discharge and utilization of hydrogen in portable electronic devices.At present work,the hydrogen generation properties of MgLi-graphite composites were evaluated for the first time.The MgLi-graphite composites with different doping amounts of expanded graphite(abbreviated as EG hereinafter)were synthesized through ball milling and the hydrogen behaviors of the composites were investigated in chloride solutions.Among the above doping systems,the 10 wt.%EG-doped MgLi exhibited the best hydrogen performance in MgCl_(2)solutions.In particular,the 22 h-milled MgLi-10 wt.%EG composites possessed both desirable hydrogen conversion and rapid reaction kinetics,delivering a hydrogen yield of 966 mL H_(2)g^(-1)within merely 2 min and a maximum hydrogen generation rate of 1147 mL H_(2)min^(-1)g^(-1),as opposed to the sluggish kinetics in the EG-free composites.Moreover,the EG-doped MgLi showed superior air-stable ability even under a 75 RH%ambient atmosphere.For example,the 22 h-milled MgLi-10 wt.%EG composites held a fuel conversion of 89%after air exposure for 72 h,rendering it an advantage for Mg-based materials to safely store and transfer in practical applications.The similar favorable hydrogen performance of MgLi-EG composites in(simulate)seawater may shed light on future development of hydrogen generation technologies. 展开更多
关键词 Hydrogen generation MgLi-graphite composites HYDROLYSIS Air-stable ability
下载PDF
Li-and Mg-based borohydrides for hydrogen storage and ionic conductor 被引量:1
9
作者 Yike Huang Yun Zheng +8 位作者 Jianding Li Xiaozhi Bao Junpo Guo Jingjun Shen Yan Guo Qi Zhang Jing Li Wen Lei huaiyu shao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第22期181-204,共24页
LiBH_(4) and Mg(BH_(4))_(2) with high theoretical hydrogen mass capacity receive significant attentions for hy-drogen storage.Also,these compounds can be potentially applied as solid-state electrolytes with their high... LiBH_(4) and Mg(BH_(4))_(2) with high theoretical hydrogen mass capacity receive significant attentions for hy-drogen storage.Also,these compounds can be potentially applied as solid-state electrolytes with their high ionic conductivity.However,their applications are hindered by the poor kinetics and reversibility for hydrogen storage and low ionic conductivity at room temperature,respectively.To address these challenges,effective strategies towards engineering the hydrogen storage properties and the emerging solid-state electrolytes with improved performances have been summarized.The focuses are on the state-of-the-art developments of Li/Mg-based borohydrides with a parallel comparison of similar methods ap-plied in both hydrogen storage and solid-state electrolytes,particularly on the phase,structure,and thermal properties changes of Li/Mg-based borohydrides induced by milling,ion substitution,coordination,adding additives/catalysts,and hydrides.The similarities and differences between the strategies towards two kinds of applications are also discussed and prospected.The review will shed light on the future development of Li/Mg-based borohydrides for hydrogen storage and solid-state electrolytes. 展开更多
关键词 Hydrogen storage Solid-state electrolyte Ionic conductor BOROHYDRIDE Thermal analysis
原文传递
Design of metal-organic frameworks for improving pseudo-solid-state magnesium-ion electrolytes:Open metal sites,isoreticular expansion,and framework topology
10
作者 Yun Zheng Junpo Guo +11 位作者 De Ning Yike Huang Wen Lei Jing Li Jianding Li Götz Schuck Jingjun Shen Yan Guo Qi Zhang Hao Tian Hou Ian huaiyu shao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第13期15-27,共13页
The design criteria for metal-organic frameworks(MOFs)have been established by evaluating the rela-tionship between their key characteristics and magnesium-ion conductivity based on three types of sec-ondary building ... The design criteria for metal-organic frameworks(MOFs)have been established by evaluating the rela-tionship between their key characteristics and magnesium-ion conductivity based on three types of sec-ondary building blocks(Zn_(4)O(CO_(2))_(6):MOF-5 and MOF-177;Cu_(2)(CO_(2))4:MOF-199,MOF-143,MOF-14,and MOF-399;Cu_(2)O_(2)(CO_(2))2:Cu-MOF-74)to achieve pseudo-solid-state magnesium-ion conduction.We found that open-metal sites and channel layouts play a pivotal role in promoting magnesium-ion transport dy-namics at reduced activation energy,transforming MOF scaffolds into ionic-channel analogs.X-ray ab-sorption spectroscopy combined with Raman and Fourier-transform infrared spectroscopy predicted the chemical environment,solvents,and anions that occupied coordinatively unsaturated metal sites.The chemical compositions of electrolytes determined by^(1)H-NMR(nuclear magnetic resonance)and organic elemental analysis confirmed that isoreticular expansion increases the molar percentage of charge carri-ers,providing high conductivity.The current research systematically reveals the impacts of different MOF characteristics on ionic conduction performance,paving the way for the construction of a new class of fast and selective multivalent-ion pseudo-solid electrolytes. 展开更多
关键词 Magnesium conduction Magnesium battery Metal-organic frameworks Solid-state electrolytes Reticular chemistry
原文传递
Highly stable and repeatable femtosecond soliton pulse generation from saturable absorbers based on twodimensional Cu3-xP nanocrystals 被引量:2
11
作者 Haoran MU Zeke LIU +11 位作者 Xiaozhi BAO Zhichen WAN Guanyu LIU Xiangping LI huaiyu shao Guichuan XING Babar SHABBIR Lei LI Tian SUN shaojuan LI Wanli MA Qiaoliang BAO 《Frontiers of Optoelectronics》 EI CSCD 2020年第2期139-148,共10页
Heavily doped colloidal plasmonic nanocrystals have attracted great attention because of their lower and adjustable free carrier densities and tunable localized surface plasmonic resonance bands in the spectral range ... Heavily doped colloidal plasmonic nanocrystals have attracted great attention because of their lower and adjustable free carrier densities and tunable localized surface plasmonic resonance bands in the spectral range from near-infra to mid-infra wavelengths.With its plasmon-enhanced optical nonlinearity,this new family of plasmonic materials shows a huge potential for nonlinear optical applications,such as ultrafast switching,nonlinear sensing,and pulse laser generation.Cu3-xP nanocrystals were previously shown to have a strong saturable absorption at the plasmonic resonance,which enabled high-energy Q-switched fiber lasers with 6.1μs pulse duration.This work demonstrates that both high-quality mode-locked and Q-switched pulses at 1560 nm can be generated by evanescently incorporating two-dimensional(2D)Cu3-xP nanocrystals onto a D-shaped optical fiber as an effective saturable absorber.The 3 dB bandwidth of the mode-locking optical spectrum is as broad as 7.3 nm,and the corresponding pulse duration can reach 423 fs.The repetition rate of the Q-switching pulses is higher than 80 kHz.Moreover,the largest pulse energy is more than 120μJ.Note that laser characteristics are highly stable and repeatable based on the results of over 20 devices.This work may trigger further investigations on heavily doped plasmonic 2D nanocrystals as a next-generation,inexpensive,and solution-processed element for fascinating photonics and optoelectronics applications. 展开更多
关键词 plasmonic semiconductors fiber laser modelocking ultrafast generation
原文传递
Probing the dynamic structural changes of DNA using ultrafast laser pulse in graphene-based optofluidic device 被引量:2
12
作者 Bannur NShivananju Lu Zhou +16 位作者 Yuefeng Yin Wenzhi Yu Babar Shabbir Haoran Mu Xiaozhi Bao Yiqiu Zhang Sun Tian Qingdong Ou shaojuan Li Mohammad MHossain Yupeng Zhang huaiyu shao Guichuan Xing Nikhil V.Medhekar Chang-Ming Li Jian Liu Qiaoliang Bao 《InfoMat》 SCIE CAS 2021年第3期316-326,共11页
The ultrafast monitoring of deoxyribonucleic acid(DNA)dynamic structural changes is an emerging and rapidly growing research topic in biotechnology.The existing optical spectroscopy used to identify different dynamica... The ultrafast monitoring of deoxyribonucleic acid(DNA)dynamic structural changes is an emerging and rapidly growing research topic in biotechnology.The existing optical spectroscopy used to identify different dynamical DNA structures lacks quick response while requiring large consumption of samples and bulky instrumental facilities.It is highly demanded to develop an ultrafast technique that monitors DNA structural changes with the external stimulus or cancer-related disease scenarios.Here,we demonstrate a novel photonic integrated graphene-optofluidic device to monitor DNA structural changes with the ultrafast response time.Our approach is featured with an effective and straightforward design of decoding the electronic structure change of graphene induced by its interactions with DNAs in different conformations using ultrafast nanosecond pulse laser and achieving refractive index sensitivity of~3×10^(−5) RIU.This innovative technique for the first time allows us to perform ultrafast monitoring of the conformational changes of special DNA molecules structures,including G-quadruplex formation by K+ions and i-motif formation by the low pH stimulus.The graphene-optofluidic device as presented here provides a new class of label-free,ultrafast,ultrasensitive,compact,and cost-effective optical biosensors for medical and healthcare applications. 展开更多
关键词 DNA optical biosensor GRAPHENE optofluidic device two-dimensional materials ultrafast fiber laser
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部