Monolayer graphene has attracted enormous attention owing to its unique electronic and optical properties.However,achieving an effective approach without applying electrical bias for manipulating the charge transfer b...Monolayer graphene has attracted enormous attention owing to its unique electronic and optical properties.However,achieving an effective approach without applying electrical bias for manipulating the charge transfer based on graphene is elusive to date.Herein,we realized the manipulation of excitons’transition from emitter to the graphene surface with plasmonic engineering nanostructures and firstly obtained large enhancements for photon emission on the graphene surface.The localized plasmons generated from the plasmonic nanostructures of shell-isolated nanoparticle coupling to ultra-flat Au substrate would dictate a consistent junction geometry while enhancing the optical field and dominating the electron transition pathways,which may cause obvious perturbations for molecular radiation behaviors.Additionally,the three-dimensional finite-difference time-domain and time-dependent density functional theory were also carried out to simulate the distributions of electromagnetic field and energy levels of hybrid nanostructure respectively and the results agreed well with the experimental data.Therefore,this work paves a novel approach for tunning graphene charge/energy transfer processes,which may hold great potential for applications in photonic devices based on graphene.展开更多
The light-matter interaction between plasmonic nanocavity and exciton at the sub-diffraction limit is a central research field in nanophotonics.Here,we demonstrated the vertical distribution of the light-matter intera...The light-matter interaction between plasmonic nanocavity and exciton at the sub-diffraction limit is a central research field in nanophotonics.Here,we demonstrated the vertical distribution of the light-matter interactions at~1 nm spatial resolution by coupling A excitons of MoS2 and gap-mode plasmonic nanocavities.Moreover,we observed the significant photoluminescence(PL)enhancement factor reaching up to 2800 times,which is attributed to the Purcell effect and large local density of states in gap-mode plasmonic nanocavities.Meanwhile,the theoretical calculations are well reproduced and support the experimental results.展开更多
基金supported by the National Key Research and Development Program of China(No.2019YFA0705400)the National Natural Science Foundation of China(Nos.21925404,22002128,22104135,62004095,and 22021001)Zhejiang Provincial Natural Science Foundation of China(No.LY23B050003).
文摘Monolayer graphene has attracted enormous attention owing to its unique electronic and optical properties.However,achieving an effective approach without applying electrical bias for manipulating the charge transfer based on graphene is elusive to date.Herein,we realized the manipulation of excitons’transition from emitter to the graphene surface with plasmonic engineering nanostructures and firstly obtained large enhancements for photon emission on the graphene surface.The localized plasmons generated from the plasmonic nanostructures of shell-isolated nanoparticle coupling to ultra-flat Au substrate would dictate a consistent junction geometry while enhancing the optical field and dominating the electron transition pathways,which may cause obvious perturbations for molecular radiation behaviors.Additionally,the three-dimensional finite-difference time-domain and time-dependent density functional theory were also carried out to simulate the distributions of electromagnetic field and energy levels of hybrid nanostructure respectively and the results agreed well with the experimental data.Therefore,this work paves a novel approach for tunning graphene charge/energy transfer processes,which may hold great potential for applications in photonic devices based on graphene.
基金supported by the National Key Research and Development Program of China(2019YFA0705400,2020YFB1505800,2019YFD0901100.and 2021YFA12015021.the National Natural Science Foundation of China(21925404,22021001,22002128,21991151,and 92161118).the Science and Technology Planning Project of Fujian Province(2021Y0104).the State Key Laboratory of Fine Chemicals Dalian University of Technology(KF2002 and the“111”Project(B17027).
文摘The light-matter interaction between plasmonic nanocavity and exciton at the sub-diffraction limit is a central research field in nanophotonics.Here,we demonstrated the vertical distribution of the light-matter interactions at~1 nm spatial resolution by coupling A excitons of MoS2 and gap-mode plasmonic nanocavities.Moreover,we observed the significant photoluminescence(PL)enhancement factor reaching up to 2800 times,which is attributed to the Purcell effect and large local density of states in gap-mode plasmonic nanocavities.Meanwhile,the theoretical calculations are well reproduced and support the experimental results.