Global cooling began since 50 Ma,but a warm climate was maintained in the archipelagic tectonic system in Southeast Asia where a wealth of Cenozoic oil and gas resources was formed and preserved.From the perspective o...Global cooling began since 50 Ma,but a warm climate was maintained in the archipelagic tectonic system in Southeast Asia where a wealth of Cenozoic oil and gas resources was formed and preserved.From the perspective of Earth system,this study analyzes Cenozoic tectonic activities,climatic and environmental evolution,and petroleum enrichment in Southeast Asia,and provides the following insights:(1)Subduction of oceanic plates and the extension of overlying continental lithosphere resulted in widespread volcanic eruptions as well as the formation of rift basins and shallow marine shelves,leading to complex interactions between deep tectonic processes and Earth’s surface including mountains,basins,and seas.(2)Microcontinental accretion and prolonged stay in equatorial low-latitude regions have changed trade winds into monsoons,altered ocean current pathways and flow rates,and profoundly affected rainfall and climate.(3)The archipelagic tectonic system,coupled with a hot and rainy climate,fostered tropical rainforests,mangroves,and phytoplankton,providing abundant organic matter and promoting the development of petroleum resources.(4)Combinations of rift basin development and marine transgression and regression led to an effective superposition of source-reservoir-seal combinations from multiplepetroleum systems.Rapid deep burial of organic matter and high geothermal gradients facilitated the generation and large-scale accumulation of oil and gas.(5)Multi-spherical(such as atmosphere,biosphere,hydrosphere and lithosphere)interactions on the Earth,which resulted from the convergence of multiple tectonic plates,are believed as the primary driver for exceptional enrichments of Cenozoic oil and gas resources in Southeast Asia.These understandings are significant for developing theories of oil and gas enrichment under the guidance of Earth System Science.In order to continue making significant oil and gas exploration discoveries in the deep-layers,deep-waters,and unconventional oil and gas fields of Southeast Asia,attention should be paid to the oil and gas resource effects of the collision between Australia and Sunda blocks and the high-temperature and high-rainfall climate environment,and efforts should be made to develop economic development and CO_(2)sequestration technologies for offshore CO_(2)-rich gas fields.展开更多
The classic model of the carbon cycle suggests that the extensive burial of ^(12)C-enriched organic carbon leads to a positive carbon isotope(δ^(13)C)excursion(CIE),while massive oxidation of organic carbon results i...The classic model of the carbon cycle suggests that the extensive burial of ^(12)C-enriched organic carbon leads to a positive carbon isotope(δ^(13)C)excursion(CIE),while massive oxidation of organic carbon results in a negative CIE.However,global events such as the BAsal Cambrian Carbon isotope Excursion(BACE)and the Steptoean Positive Carbon Isotope Excursion(SPICE)are global negative and positive δ^(13)C excursions,respectively,and they also exhibit significant organic carbon burial anomalies,displaying decoupling between carbon isotope anomalies and organic carbon burial.Based on the analyses of the Cambrian carbon cycle and paleoceanographic evolution records from well Tadong2 in the Tarim Basin,we propose a novel model of the carbon cycle in the Cambrian ocean that incorporates oceanic dissolved organic carbon(DOC).Our findings are as follows.(1)The Cambrian ocean maintained substantial DOC reservoirs,which were regulated by ocean currents and paleo-redox conditions and exerted significant influence on the oceanic carbon cycle.(2)The oxidation of the oceanic DOC reservoirs during the early Cambrian led to the BACE and the Asian Phenomenon of the Cambrian petroleum systems,while the expansion of the oceanic DOC reservoirs during the SPICE resulted in a global positive δ^(13)C excursion and the absence of significant organic carbon burial.(3)The deep-basin sedimentary environment in the eastern depression of the Tarim Basin may have fostered the development of organic-rich black shales during the Furongian Series,corresponding to organic carbon burial during the SPICE and representing potential prospects for ultra-deep oil and gas exploration.Future research should focus on the formation mechanism,reserve scale,and influencing factors of the oceanic DOC reservoirs,as well as their resource and environmental effects.It is expected that new breakthroughs will be made in the fields of Earth system science and oil and gas exploration.展开更多
The North Sea Basin is the most important oil and gas producing area in Europe and the birthplace of many classic petroleum geological theories. From the perspective of multi-spheric interactions in the Earth, this st...The North Sea Basin is the most important oil and gas producing area in Europe and the birthplace of many classic petroleum geological theories. From the perspective of multi-spheric interactions in the Earth, this study investigated the riftforeland-rift evolution process of the North Sea Basin, which was controlled by the deep dynamic driving forces of the continental collision orogeny, mantle plume uplift, and intraplate deformation. The North Sea Basin was found to have drifted northward since the Carboniferous and passed through the low-latitude Hadley and the mid-latitude Ferrel cells. Two sets of main hydrocarbon source rocks have formed, the coals and coal measures of the Upper Carboniferous Westphalian and the marine shale of the Upper Jurassic Kimmeridge Clay Formation. We propose that the deep processes, tectonic activity, and transgression-climate evolution jointly controlled the types and horizons of the source rocks, reservoirs, and seals in different regions of the North Sea Basin. In the southern North Sea Basin, a Carboniferous-Lower Triassic gas-rich petroleum system was formed,which is characterized by transitional coal measure source rocks, desert aeolian sandstone reservoirs, and evaporite cap rocks. In the northern North Sea Basin, an Upper Triassic-Paleogene oil-rich petroleum system was formed, which is characterized by marine graben-type source rocks, deltaic sandstone and marine limestone reservoirs, and marine tight marl and shale cap rocks.The late tectonic burial and uplift in the North Sea Basin further controlled the processes of oil and gas generation and accumulation, ultimately leading to a differential distribution pattern which is oil rich in the northern part and gas rich in the southern part of the basin. In the future, there is an urgent need to re-examine the mechanisms for the petroleum generation and accumulation in large mature exploration areas(e.g., super basins such as the North Sea) and low exploration areas(e.g., the Okhotsk Sea and Arctic regions) from the perspective of multi-spheric interactions in the Earth in order to provide new theoretical support for increasing the identification of oil and gas reserves globally. The development of artificial intelligence in the petroleum industry should focus on the massive amount of exploration and geological data collected in the North Sea Basin.Through digital geological innovation, carbon neutral comprehensive utilization of oil, gas, and associated resources(e.g.,helium and hydrogen) can be achieved, providing a new paradigm for global oil and gas exploration and development.展开更多
0 INTRODUCTION The Gulong shale oil is a new type of hydrocarbon resource enriched in the clay-rich shale of the Upper Cretaceous Qingshankou Formation in the Songliao Basin.Because it is most typical in the Gulong de...0 INTRODUCTION The Gulong shale oil is a new type of hydrocarbon resource enriched in the clay-rich shale of the Upper Cretaceous Qingshankou Formation in the Songliao Basin.Because it is most typical in the Gulong depression in the northern part of the Songliao Basin and has been commercially developed,it is called Gulong shale oil(Sun et al.,2021).展开更多
Lacustrine systems since the Mesozoic have sequestered large quantities of organic carbon,which may have important value for global climate cooling,but there is still a lack of geological evidence of this sequestratio...Lacustrine systems since the Mesozoic have sequestered large quantities of organic carbon,which may have important value for global climate cooling,but there is still a lack of geological evidence of this sequestration.Taking the Songliao Basin in China as a case study,we elucidate the important function of lacustrine basins as sinks of a large amount of organic carbon,particularly when the contemporaneous marine sediments were poor sinks of organic carbon.Volcanic activities and orbital forcing were likely key factors influencing the water transportation between the land and oceans,as well as the alternating burial of organic carbon in the oceans and land.Microorganisms related to methane metabolism may have been highly involved in the mineralization and sequestration of lacustrine organic carbon.This study provides new insights into the coupled carbon–water cycle between the land and oceans and the influence of this process on global climate evolution.展开更多
A large number of primary oil and gas reservoirs have been discovered in Proterozoic strata all over the globe.Proterozoic sequences are widely distributed in China, and the discovery of large Sinian-aged gas reservoi...A large number of primary oil and gas reservoirs have been discovered in Proterozoic strata all over the globe.Proterozoic sequences are widely distributed in China, and the discovery of large Sinian-aged gas reservoirs in the Sichuan Basin and Mesoproterozoic liquid oil seepages in North China shows that attention should be paid to the exploration potential of Proterozoic strata. In this paper, the main controlling factors of Proterozoic source rocks are discussed. Principally, active atmospheric circulation and astronomical cycles may have driven intense upwelling and runoff to provide nutrients; oxygenated oceanic surface waters could have provided suitable environments for the organisms to thrive; volcanic activity and terrestrial weathering caused by continental break-up would have injected large amounts of nutrients into the ocean, leading to persistent blooms of marine organisms; and extensive anoxic deep waters may have created ideal conditions for the preservation of organic matter. Additionally, the appearance of eukaryotes resulted in diversified hydrocarbon parent material, which effectively improved the generation potential for oil and gas. Through the comparison of Formations across different cratons, seven sets of Proterozoic organic-rich source rocks have been recognized in China, which mainly developed during interglacial periods and are also comparable worldwide. The Hongshuizhuang and Xiamaling Formations in North China have already been identified previously as Mesoproterozoic source rocks. The early Proterozoic Changchengian System is highly promising as a potential source rock in the Ordos Basin. In the Upper Yangtze area, the Neoproterozoic Datangpo and Doushantuo Formations are extensively distributed, and represent the major source rocks for Sinian gas reservoirs in the Sichuan Basin. Moreover, the Nanhuan System may contain abundant shales with high organic matter contents in the Tarim Basin, although this possibility still needs to be verified. Indeed, all three cratons may contain source rocks of Proterozoic strata; thus, these strata represent major exploration targets worthy of great attention.展开更多
The accumulation of oxygen is one of the most important characteristics that distinguish Earth from other planets in the solar system,which is also considered to be the key factor influencing the birth and evolution o...The accumulation of oxygen is one of the most important characteristics that distinguish Earth from other planets in the solar system,which is also considered to be the key factor influencing the birth and evolution of complex life forms.The oxygenation process of the Earth surface has long been viewed to be episodic with two critical intervals occurring in the early Paleoproterozoic(2.45-2.10 Ga)and the late Neoproterozoic(0.80-0.54 Ga),with a 1.3-billion-year-long low oxygen period in between.Recently,increasing independent works carried out by different scientific teams in the Yanliao Basin,North China are demonstrating that the atmospheric oxygen concentrations had reached>4%PAL(present atmospheric levels)at least during 1.59-1.56,1.44-1.43,and 1.40-1.36 Ga.These estimated values are higher than the previously recommended values of<0.1-1%PAL.Such a scenario discovered in the Yanliao Basin is consistent with the synchronously deposited strata in Australia and Siberia,pointing to a Mesoproterozoic oxygenation event(1.59-1.36 Ga)between the two major oxygenation intervals during the Proterozoic.This Mesoproterozoic oxygenation event is coupled with the break-up of the Columbia(Nuna)supercontinent,the formation of organic-rich shales and Fe-Mn deposits,and the early innovation of eukaryotic algae,indicating that the geological and biological co-evolutionary processes control the Earth surface system.展开更多
Exploring the mysteries of life is an eternal frontier of science. Containing complex and diverse organisms on the surface of the Earth is one of the most crucial characteristics that distinguish the Earth from other ...Exploring the mysteries of life is an eternal frontier of science. Containing complex and diverse organisms on the surface of the Earth is one of the most crucial characteristics that distinguish the Earth from other planets in the Solar system. Almost all animals, plants, and fungi that can be seen with the naked eye belong to eukaryotes。展开更多
In this study,alkali/acid treatment and ion exchange post-synthesis modification methods to modify the pore diameter and structure of molecular sieve 13X(MS13X)were applied to obtain products,which could then be imple...In this study,alkali/acid treatment and ion exchange post-synthesis modification methods to modify the pore diameter and structure of molecular sieve 13X(MS13X)were applied to obtain products,which could then be implemented to improve the enrichment recovery of hopanoids in petroleum.The modification products were analyzed by SEM with EDS,XRD and nitrogen physisorption.The results indicated that the product which had been prepared in the oxalic acid ethanol solution formed some mesopores,and also retained the initial framework of crystal.It was revealed that this product was able to remarkably increase the recovery rate of hopanoids in petroleum without leading to a significant isotope fractionation phenomenon.It is thus shown that this modification method of non-aqueous oxalic acid solution for MS13X can be used as an effective pretreatment tool in the application of compoundspecific isotope analysis of hopanes with low concentration.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42288201,92255303,42202162)。
文摘Global cooling began since 50 Ma,but a warm climate was maintained in the archipelagic tectonic system in Southeast Asia where a wealth of Cenozoic oil and gas resources was formed and preserved.From the perspective of Earth system,this study analyzes Cenozoic tectonic activities,climatic and environmental evolution,and petroleum enrichment in Southeast Asia,and provides the following insights:(1)Subduction of oceanic plates and the extension of overlying continental lithosphere resulted in widespread volcanic eruptions as well as the formation of rift basins and shallow marine shelves,leading to complex interactions between deep tectonic processes and Earth’s surface including mountains,basins,and seas.(2)Microcontinental accretion and prolonged stay in equatorial low-latitude regions have changed trade winds into monsoons,altered ocean current pathways and flow rates,and profoundly affected rainfall and climate.(3)The archipelagic tectonic system,coupled with a hot and rainy climate,fostered tropical rainforests,mangroves,and phytoplankton,providing abundant organic matter and promoting the development of petroleum resources.(4)Combinations of rift basin development and marine transgression and regression led to an effective superposition of source-reservoir-seal combinations from multiplepetroleum systems.Rapid deep burial of organic matter and high geothermal gradients facilitated the generation and large-scale accumulation of oil and gas.(5)Multi-spherical(such as atmosphere,biosphere,hydrosphere and lithosphere)interactions on the Earth,which resulted from the convergence of multiple tectonic plates,are believed as the primary driver for exceptional enrichments of Cenozoic oil and gas resources in Southeast Asia.These understandings are significant for developing theories of oil and gas enrichment under the guidance of Earth System Science.In order to continue making significant oil and gas exploration discoveries in the deep-layers,deep-waters,and unconventional oil and gas fields of Southeast Asia,attention should be paid to the oil and gas resource effects of the collision between Australia and Sunda blocks and the high-temperature and high-rainfall climate environment,and efforts should be made to develop economic development and CO_(2)sequestration technologies for offshore CO_(2)-rich gas fields.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42225303,42372162,42102146)the Basic and Forward-Looking Major Technology Projects of China National Petroleum Corporation(Grant No.2023ZZ0203)+1 种基金the National Key Research and Development Program of China(Grant No.2017YFC0603101)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA14010101)。
文摘The classic model of the carbon cycle suggests that the extensive burial of ^(12)C-enriched organic carbon leads to a positive carbon isotope(δ^(13)C)excursion(CIE),while massive oxidation of organic carbon results in a negative CIE.However,global events such as the BAsal Cambrian Carbon isotope Excursion(BACE)and the Steptoean Positive Carbon Isotope Excursion(SPICE)are global negative and positive δ^(13)C excursions,respectively,and they also exhibit significant organic carbon burial anomalies,displaying decoupling between carbon isotope anomalies and organic carbon burial.Based on the analyses of the Cambrian carbon cycle and paleoceanographic evolution records from well Tadong2 in the Tarim Basin,we propose a novel model of the carbon cycle in the Cambrian ocean that incorporates oceanic dissolved organic carbon(DOC).Our findings are as follows.(1)The Cambrian ocean maintained substantial DOC reservoirs,which were regulated by ocean currents and paleo-redox conditions and exerted significant influence on the oceanic carbon cycle.(2)The oxidation of the oceanic DOC reservoirs during the early Cambrian led to the BACE and the Asian Phenomenon of the Cambrian petroleum systems,while the expansion of the oceanic DOC reservoirs during the SPICE resulted in a global positive δ^(13)C excursion and the absence of significant organic carbon burial.(3)The deep-basin sedimentary environment in the eastern depression of the Tarim Basin may have fostered the development of organic-rich black shales during the Furongian Series,corresponding to organic carbon burial during the SPICE and representing potential prospects for ultra-deep oil and gas exploration.Future research should focus on the formation mechanism,reserve scale,and influencing factors of the oceanic DOC reservoirs,as well as their resource and environmental effects.It is expected that new breakthroughs will be made in the fields of Earth system science and oil and gas exploration.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42288201, 92255303, 42202162, 42372162)。
文摘The North Sea Basin is the most important oil and gas producing area in Europe and the birthplace of many classic petroleum geological theories. From the perspective of multi-spheric interactions in the Earth, this study investigated the riftforeland-rift evolution process of the North Sea Basin, which was controlled by the deep dynamic driving forces of the continental collision orogeny, mantle plume uplift, and intraplate deformation. The North Sea Basin was found to have drifted northward since the Carboniferous and passed through the low-latitude Hadley and the mid-latitude Ferrel cells. Two sets of main hydrocarbon source rocks have formed, the coals and coal measures of the Upper Carboniferous Westphalian and the marine shale of the Upper Jurassic Kimmeridge Clay Formation. We propose that the deep processes, tectonic activity, and transgression-climate evolution jointly controlled the types and horizons of the source rocks, reservoirs, and seals in different regions of the North Sea Basin. In the southern North Sea Basin, a Carboniferous-Lower Triassic gas-rich petroleum system was formed,which is characterized by transitional coal measure source rocks, desert aeolian sandstone reservoirs, and evaporite cap rocks. In the northern North Sea Basin, an Upper Triassic-Paleogene oil-rich petroleum system was formed, which is characterized by marine graben-type source rocks, deltaic sandstone and marine limestone reservoirs, and marine tight marl and shale cap rocks.The late tectonic burial and uplift in the North Sea Basin further controlled the processes of oil and gas generation and accumulation, ultimately leading to a differential distribution pattern which is oil rich in the northern part and gas rich in the southern part of the basin. In the future, there is an urgent need to re-examine the mechanisms for the petroleum generation and accumulation in large mature exploration areas(e.g., super basins such as the North Sea) and low exploration areas(e.g., the Okhotsk Sea and Arctic regions) from the perspective of multi-spheric interactions in the Earth in order to provide new theoretical support for increasing the identification of oil and gas reserves globally. The development of artificial intelligence in the petroleum industry should focus on the massive amount of exploration and geological data collected in the North Sea Basin.Through digital geological innovation, carbon neutral comprehensive utilization of oil, gas, and associated resources(e.g.,helium and hydrogen) can be achieved, providing a new paradigm for global oil and gas exploration and development.
基金financially supported by the National Natural Science Foundation of China(No.42372162)the project of Theory of Hydrocarbon Enrichment under Multi-Spheric Interactions of the Earth(THEMSIE)the Scientific Research and Technology Development Program of CNPC(No.2021DJ0102)。
文摘0 INTRODUCTION The Gulong shale oil is a new type of hydrocarbon resource enriched in the clay-rich shale of the Upper Cretaceous Qingshankou Formation in the Songliao Basin.Because it is most typical in the Gulong depression in the northern part of the Songliao Basin and has been commercially developed,it is called Gulong shale oil(Sun et al.,2021).
基金financially supported by the National Natural Science Foundation of China(42372162,U22B6004)the Scientific Research and Technology Development Program of the CNPC(2021DJ0102,2021DJ1808).
文摘Lacustrine systems since the Mesozoic have sequestered large quantities of organic carbon,which may have important value for global climate cooling,but there is still a lack of geological evidence of this sequestration.Taking the Songliao Basin in China as a case study,we elucidate the important function of lacustrine basins as sinks of a large amount of organic carbon,particularly when the contemporaneous marine sediments were poor sinks of organic carbon.Volcanic activities and orbital forcing were likely key factors influencing the water transportation between the land and oceans,as well as the alternating burial of organic carbon in the oceans and land.Microorganisms related to methane metabolism may have been highly involved in the mineralization and sequestration of lacustrine organic carbon.This study provides new insights into the coupled carbon–water cycle between the land and oceans and the influence of this process on global climate evolution.
基金supported by the National Key Research and Development Program of China (Grant No. 2017YFC0603101)National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2016ZX05004001)+2 种基金National Natural Science Foundation of China (Grant Nos. 41530317, 41602144)Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA14010101)Scientific Research and Technological Development Project of CNPC(Grant No. 2016A-0200)
文摘A large number of primary oil and gas reservoirs have been discovered in Proterozoic strata all over the globe.Proterozoic sequences are widely distributed in China, and the discovery of large Sinian-aged gas reservoirs in the Sichuan Basin and Mesoproterozoic liquid oil seepages in North China shows that attention should be paid to the exploration potential of Proterozoic strata. In this paper, the main controlling factors of Proterozoic source rocks are discussed. Principally, active atmospheric circulation and astronomical cycles may have driven intense upwelling and runoff to provide nutrients; oxygenated oceanic surface waters could have provided suitable environments for the organisms to thrive; volcanic activity and terrestrial weathering caused by continental break-up would have injected large amounts of nutrients into the ocean, leading to persistent blooms of marine organisms; and extensive anoxic deep waters may have created ideal conditions for the preservation of organic matter. Additionally, the appearance of eukaryotes resulted in diversified hydrocarbon parent material, which effectively improved the generation potential for oil and gas. Through the comparison of Formations across different cratons, seven sets of Proterozoic organic-rich source rocks have been recognized in China, which mainly developed during interglacial periods and are also comparable worldwide. The Hongshuizhuang and Xiamaling Formations in North China have already been identified previously as Mesoproterozoic source rocks. The early Proterozoic Changchengian System is highly promising as a potential source rock in the Ordos Basin. In the Upper Yangtze area, the Neoproterozoic Datangpo and Doushantuo Formations are extensively distributed, and represent the major source rocks for Sinian gas reservoirs in the Sichuan Basin. Moreover, the Nanhuan System may contain abundant shales with high organic matter contents in the Tarim Basin, although this possibility still needs to be verified. Indeed, all three cratons may contain source rocks of Proterozoic strata; thus, these strata represent major exploration targets worthy of great attention.
基金This work was supported by the Strategic Priority Science and Technology Program of Chinese Academy of Sciences(Class A)(Grant No.XDA14010101)the National Key Research and Development Program(Grant No.2017YFC0603101)the National Natural Science Foundation of China(Grant Nos.41872125,41530317).
文摘The accumulation of oxygen is one of the most important characteristics that distinguish Earth from other planets in the solar system,which is also considered to be the key factor influencing the birth and evolution of complex life forms.The oxygenation process of the Earth surface has long been viewed to be episodic with two critical intervals occurring in the early Paleoproterozoic(2.45-2.10 Ga)and the late Neoproterozoic(0.80-0.54 Ga),with a 1.3-billion-year-long low oxygen period in between.Recently,increasing independent works carried out by different scientific teams in the Yanliao Basin,North China are demonstrating that the atmospheric oxygen concentrations had reached>4%PAL(present atmospheric levels)at least during 1.59-1.56,1.44-1.43,and 1.40-1.36 Ga.These estimated values are higher than the previously recommended values of<0.1-1%PAL.Such a scenario discovered in the Yanliao Basin is consistent with the synchronously deposited strata in Australia and Siberia,pointing to a Mesoproterozoic oxygenation event(1.59-1.36 Ga)between the two major oxygenation intervals during the Proterozoic.This Mesoproterozoic oxygenation event is coupled with the break-up of the Columbia(Nuna)supercontinent,the formation of organic-rich shales and Fe-Mn deposits,and the early innovation of eukaryotic algae,indicating that the geological and biological co-evolutionary processes control the Earth surface system.
基金supported by the National Natural Science Foundation of China (Nos.42225303 and 41872125)the National Key Research and Development Program of China (Nos.2022YFF0800300 and 2021YFA0718200)。
文摘Exploring the mysteries of life is an eternal frontier of science. Containing complex and diverse organisms on the surface of the Earth is one of the most crucial characteristics that distinguish the Earth from other planets in the Solar system. Almost all animals, plants, and fungi that can be seen with the naked eye belong to eukaryotes。
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA14010101)the National Natural Science Foundation of China(NNSFC,Project No.41473020)PetroChina Science and Technology Projects(Grants 2019A-0208)for supporting this research project.
文摘In this study,alkali/acid treatment and ion exchange post-synthesis modification methods to modify the pore diameter and structure of molecular sieve 13X(MS13X)were applied to obtain products,which could then be implemented to improve the enrichment recovery of hopanoids in petroleum.The modification products were analyzed by SEM with EDS,XRD and nitrogen physisorption.The results indicated that the product which had been prepared in the oxalic acid ethanol solution formed some mesopores,and also retained the initial framework of crystal.It was revealed that this product was able to remarkably increase the recovery rate of hopanoids in petroleum without leading to a significant isotope fractionation phenomenon.It is thus shown that this modification method of non-aqueous oxalic acid solution for MS13X can be used as an effective pretreatment tool in the application of compoundspecific isotope analysis of hopanes with low concentration.