期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
探究环状拓扑结构在聚合诱导自组装中的影响
1
作者 尹德鹏 许文 +2 位作者 张华龙 刘超 洪春雁 《中国科学技术大学学报》 CAS CSCD 北大核心 2022年第5期1-10,I0002,共11页
近些年,聚合诱导自组装得到了广泛的关注,但使用环状聚合物作为聚合诱导自组装的大分子链转移剂的研究还尚未报道。为此,本文合成了环状和线形两种聚乙二醇大分子链转移剂,分别以甲基丙烯酸苄酯和2,3,4,5,6-五氟苯乙烯为单体进行可逆加... 近些年,聚合诱导自组装得到了广泛的关注,但使用环状聚合物作为聚合诱导自组装的大分子链转移剂的研究还尚未报道。为此,本文合成了环状和线形两种聚乙二醇大分子链转移剂,分别以甲基丙烯酸苄酯和2,3,4,5,6-五氟苯乙烯为单体进行可逆加成断裂链转移分散聚合,研究了拓扑结构对聚合动力学和嵌段聚合物组装体形貌转变的影响。研究发现,环状拓扑结构可以延长聚合诱导自组装过程的成核期,同时嵌段聚合物组装体的形貌转变也会被延迟,这可能是由于环状聚乙二醇具有更好的溶解性。 展开更多
关键词 可逆加成断裂链转移聚合 聚合诱导自组装 环状聚合物 拓扑效应
下载PDF
Structural and electronic effects boosting Ni-doped Mo_(2)C catalyst toward high-efficiency C-O/C-C bonds cleavage
2
作者 Xiangze Du Jinjia Liu +10 位作者 Dan Li Hui Xin Xiaomei Lei Rui zhang Linyuan Zhou Huiru Yang Yan Zeng hualong zhang Wentao Zheng Xiaodong Wen Changwei Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期109-116,I0004,共9页
The selective cleavage of C-O and C-C is facing a challenge in the field of catalysis.In the present work,we studied the influence of doped Ni on the structure and electronic properties,as well as the selective C-O/C-... The selective cleavage of C-O and C-C is facing a challenge in the field of catalysis.In the present work,we studied the influence of doped Ni on the structure and electronic properties,as well as the selective C-O/C-C bond cleavages in the hydrodeoxygenation of palmitic acid over Ni-Mo_(2)C catalyst.The catalytic activity on Ni doped Mo_(2)C with TOF of 6.9×10^(3)h^(-1)is much superior to intrinsic Mo_(2)C catalyst,which is also higher than most noble metal catalysts.Structurally,the doped Ni raises the active particle dispersion and the coordination numbers of Mo species(Mo-C and Mo-O),improves the graphitization degree to promote the electron transfer,and increases the amount of Lewis and Br?nsted acid,which are responsible for the excellent hydrodeoxygenation performance.The Ni promotes simultaneously C-O and C-C bonds cleavage to produce pentadecane and hexadecane owing to the increase of electron-rich Mo sites after Ni doping.These findings contribute to the understanding of the nature of Ni-doped Mo_(2)C on the roles as catalytic active sites for C-O and C-C bonds cleavage. 展开更多
关键词 Ni-doped Mo_(2)C Palmitic acid HYDRODEOXYGENATION C-O/C-C bond cleavages BIOFUEL
下载PDF
Wintertime peroxyacetyl nitrate(PAN) in the megacity Beijing: Role of photochemical and meteorological processes 被引量:11
3
作者 hualong zhang Xiaobin Xu +1 位作者 Weili Lin Ying Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第1期83-96,共14页
Previous measurements of peroxyacetyl nitrate (PAN) in Asian megacities were scarce and mainly conducted for relative short periods in summer. Here, we present and analyze the measurements of PAN, O3, NOx, etc., mad... Previous measurements of peroxyacetyl nitrate (PAN) in Asian megacities were scarce and mainly conducted for relative short periods in summer. Here, we present and analyze the measurements of PAN, O3, NOx, etc., made at an urban site (CMA) in Beijing from 25 January to 22 March 2010. The hourly concentration of PAN averaged 0.70 × 10^-9 mol/mol (0.23 × 10^9-3.51 × 10^9 mol/mol) and was well correlated with that of NOa but not O3, indicating that the variations of the winter concentrations of PAN and O3 in urban Beijing are decoupled with each other. Wind conditions and transport of air masses exert very significant impacts on O3, PAN, and other species. Air masses arriving at the site originated either from the boundary layer over the highly polluted N-S-W sector or from the free troposphere over the W-N sector. The descending free-tropospheric air was rich in O3, with an average PAN/O3 ratio smaller than 0.O31, while the boundary layer air over the polluted sector contained higher levels of PAN and primary pollutants, with an average PAN/O3 ratio of 0.11. These facts related with transport conditions can well explain the observed PAN-O3 decoupling. Photochemical production is important to PAN in the winter over Beijing. The concentration of the peroxyacetyl (PA) radicai was estimated to be in the range of 0.0014 × 10^-12~0.0042 × 10^-12 mol/mol. The contributions of the formation reaction and thermal decomposition to PAN's variation were calculated and found to be significant even in the colder period in air over Beijing, with the production exceeding the decomposition. 展开更多
关键词 peroxyacetyl nitrate photochemical production wintertime urban Beijing
原文传递
Scalable preparation and direct visualization of cyclic polymers via self-folding cyclization technique 被引量:1
4
作者 hualong zhang Hao Zha +1 位作者 Chao Liu Chunyan Hong 《Science China Chemistry》 SCIE EI CAS CSCD 2022年第12期2558-2566,共9页
Cyclic polymers exhibit distinct properties compared with their linear counterparts due to the lack of chain ends.However,the scalable synthesis of cyclic polymers remains a major challenge,especially for ring-closure... Cyclic polymers exhibit distinct properties compared with their linear counterparts due to the lack of chain ends.However,the scalable synthesis of cyclic polymers remains a major challenge,especially for ring-closure method.Herein,we report a novel strategy for large-scale preparation of cyclic polymers,which relies on the prior self-folding of anthracene-telechelic amphiphilic random copolymers(poly((oligo(ethylene glycol)acrylate)-co-(dodecyl acrylate)),P(OEGA-co-DDA))into single-chain polymeric nanoparticles(SCPNs)in water.Subsequent ultraviolet(UV)-induced cyclization occurs in the hydrophobic nano-domain.The formation of SCPNs leads to a shortened distance between the end groups of the linear precursors and spatially separated cyclization loci,and significantly enhances the efficiency of UV-induced cyclization.This self-folding technique permits access to the synthesis of cyclic polymers not only with high molecular weights(M_(n)>10^(5) g/mol),but also in a decent scale(40 g/L),breaking through the limitations of ring-closure method.Furthermore,the dense pendants of the copolymers can magnify the macromolecules by increasing the mass density along the backbones,thus making the polymers more readily detectable by the microscopy.The transmission electron microscopy(TEM)and atomic force microscopy(AFM)images allow us to observe the topological structures directly and provide crucial evidence to confirm the cyclization. 展开更多
关键词 cyclic polymer scalable preparation direct visualization self-folding cyclization technique
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部