期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A clinical trial termination prediction model based on denoising autoencoder and deep survival regression
1
作者 huamei qi Wenhui Yang +1 位作者 Wenqin Zou Yuxuan Hu 《Quantitative Biology》 CAS CSCD 2024年第2期205-214,共10页
Effective clinical trials are necessary for understanding medical advances but early termination of trials can result in unnecessary waste of resources.Survival models can be used to predict survival probabilities in ... Effective clinical trials are necessary for understanding medical advances but early termination of trials can result in unnecessary waste of resources.Survival models can be used to predict survival probabilities in such trials.However,survival data from clinical trials are sparse,and DeepSurv cannot accurately capture their effective features,making the models weak in generalization and decreasing their prediction accuracy.In this paper,we propose a survival prediction model for clinical trial completion based on the combination of denoising autoencoder(DAE)and DeepSurv models.The DAE is used to obtain a robust representation of features by breaking the loop of raw features after autoencoder training,and then the robust features are provided to DeepSurv as input for training.The clinical trial dataset for training the model was obtained from the ClinicalTrials.gov dataset.A study of clinical trial completion in pregnant women was conducted in response to the fact that many current clinical trials exclude pregnant women.The experimental results showed that the denoising autoencoder and deep survival regression(DAE-DSR)model was able to extract meaningful and robust features for survival analysis;the C-index of the training and test datasets were 0.74 and 0.75 respectively.Compared with the Cox proportional hazards model and DeepSurv model,the survival analysis curves obtained by using DAE-DSR model had more prominent features,and the model was more robust and performed better in actual prediction. 展开更多
关键词 clinical trials denoising autoencoder DeepSurv experimental termination survival analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部