The dielectric constant(ϵ)is a critical parameter utilized in the design of polymeric dielectrics for energy storage capacitors,microelectronic devices,and high-voltage insulations.However,agile discovery of polymer d...The dielectric constant(ϵ)is a critical parameter utilized in the design of polymeric dielectrics for energy storage capacitors,microelectronic devices,and high-voltage insulations.However,agile discovery of polymer dielectrics with desirableϵremains a challenge,especially for high-energy,high-temperature applications.To aid accelerated polymer dielectrics discovery,we have developed a machine-learning(ML)-based model to instantly and accurately predict the frequency-dependentϵof polymers with the frequency range spanning 15 orders of magnitude.Our model is trained using a dataset of 1210 experimentally measuredϵvalues at different frequencies,an advanced polymer fingerprinting scheme and the Gaussian process regression algorithm.展开更多
基金This work is supported by the Office of Naval Research through N0014-17-1-2656,a Multi-University Research Initiative(MURI)grant.
文摘The dielectric constant(ϵ)is a critical parameter utilized in the design of polymeric dielectrics for energy storage capacitors,microelectronic devices,and high-voltage insulations.However,agile discovery of polymer dielectrics with desirableϵremains a challenge,especially for high-energy,high-temperature applications.To aid accelerated polymer dielectrics discovery,we have developed a machine-learning(ML)-based model to instantly and accurately predict the frequency-dependentϵof polymers with the frequency range spanning 15 orders of magnitude.Our model is trained using a dataset of 1210 experimentally measuredϵvalues at different frequencies,an advanced polymer fingerprinting scheme and the Gaussian process regression algorithm.