Grinding chatter is a self?induced vibration which is unfavorable to precision machining processes. This paper proposes a forecasting method for grinding state identification based on bivarition empirical mode decompo...Grinding chatter is a self?induced vibration which is unfavorable to precision machining processes. This paper proposes a forecasting method for grinding state identification based on bivarition empirical mode decomposition(BEMD) and least squares support vector machine(LSSVM), which allows the monitoring of grinding chatter over time. BEMD is a promising technique in signal processing research which involves the decomposition of two?dimen?sional signals into a series of bivarition intrinsic mode functions(BIMFs). BEMD and the extraction criterion of its true BIMFs are investigated by processing a complex?value simulation chatter signal. Then the feature vectors which are employed as an amplification for the chatter premonition are discussed. Furthermore, the methodology is tested and validated by experimental data collected from a CNC guideway grinder KD4020 X16 in Hangzhou Hangji Machine Tool Co., Ltd. The results illustrate that the BEMD is a superior method in terms of processing non?stationary and nonlinear signals. Meanwhile, the peak to peak, real?time standard deviation and instantaneous energy are proven to be e ec?tive feature vectors which reflect the di erent grinding states. Finally, a LSSVM model is established for grinding status classification based on feature vectors, giving a prediction accuracy rate of 96%.展开更多
基金National Natural Science Foundation of China(Grant No.51475432)Zhejiang Provincial National Natural Science Foundation of China(Grant No.LZ13E050003)State Key Program of National Natural Science of China(Grant Nos.U1234207,U1709210)
文摘Grinding chatter is a self?induced vibration which is unfavorable to precision machining processes. This paper proposes a forecasting method for grinding state identification based on bivarition empirical mode decomposition(BEMD) and least squares support vector machine(LSSVM), which allows the monitoring of grinding chatter over time. BEMD is a promising technique in signal processing research which involves the decomposition of two?dimen?sional signals into a series of bivarition intrinsic mode functions(BIMFs). BEMD and the extraction criterion of its true BIMFs are investigated by processing a complex?value simulation chatter signal. Then the feature vectors which are employed as an amplification for the chatter premonition are discussed. Furthermore, the methodology is tested and validated by experimental data collected from a CNC guideway grinder KD4020 X16 in Hangzhou Hangji Machine Tool Co., Ltd. The results illustrate that the BEMD is a superior method in terms of processing non?stationary and nonlinear signals. Meanwhile, the peak to peak, real?time standard deviation and instantaneous energy are proven to be e ec?tive feature vectors which reflect the di erent grinding states. Finally, a LSSVM model is established for grinding status classification based on feature vectors, giving a prediction accuracy rate of 96%.