Blood exosomes,which are extracellular vesicles secreted by living cells into the circulating blood,are regarded as a relatively noninvasive novel tool for monitoring brain physiology and disease states.An increasing ...Blood exosomes,which are extracellular vesicles secreted by living cells into the circulating blood,are regarded as a relatively noninvasive novel tool for monitoring brain physiology and disease states.An increasing number of blood cargo-loaded exosomes are emerging as potential biomarkers for preclinical and clinical Alzheimer's disease.Therefo re,we conducted a meta-analysis and systematic review of molecular biomarkers derived from blood exosomes to comprehensively analyze their diagnostic performance in preclinical Alzheimer's disease,mild cognitive impairment,and Alzheimer's disease.We performed a literature search in PubMed,Web of Science,Embase,and Cochrane Library from their inception to August 15,2020.The research subjects mainly included Alzheimer's disease,mild cognitive impairment,and preclinical Alzheimer's disease.We identified 34 observational studies,of which 15 were included in the quantitative analysis(Newcastle-Ottawa Scale score 5.87 points)and 19 were used in the qualitative analysis.The meta-analysis results showed that core biomarkers including Aβ_(1-42),P-T181-tau,P-S396-tau,and T-tau were increased in blood neuro nderived exosomes of preclinical Alzheimer's disease,mild cognitive impairment,and Alzheimer's disease patients.M olecules related to additional risk facto rs that are involved in neuroinflammation(C1q),metabolism disorder(P-S312-IRS-1),neurotrophic deficiency(HGF),vascular injury(VEGF-D),and autophagy-lysosomal system dysfunction(cathepsin D)were also increased.At the gene level,the differential expression of transc ription-related factors(REST)and microRNAs(miR-132)also affects RNA splicing,transport,and translation.These pathological changes contribute to neural loss and synaptic dysfunction.The data confirm that the above-mentioned core molecules and additional ris k-related factors in blood exosomes can serve as candidate biomarkers for preclinical and clinical Alzheimer's disease.These findings support further development of exosome biomarkers for a clinical blood test for Alzheimer's disease.This meta-analysis was registered at the International Prospective Register of Systematic Reviews(Registration No.CRD4200173498,28/04/2020).展开更多
BACKGROUND Recent studies have demonstrated that dysfunction of the intestinal barrier is a significant contributing factor to the development of severe acute pancreatitis(SAP).A stable intestinal mucosa barrier funct...BACKGROUND Recent studies have demonstrated that dysfunction of the intestinal barrier is a significant contributing factor to the development of severe acute pancreatitis(SAP).A stable intestinal mucosa barrier functions as a major anatomic and functional barrier,owing to the balance between intestinal epithelial cell(IEC)proliferation and apoptosis.There is some evidence that calcium overload may trigger IEC apoptosis and that calcineurin(CaN)/nuclear factor of activated Tcells(NFAT)signaling might play an important role in calcium-mediated apoptosis.AIM To investigate the potential mechanisms underlying the therapeutic effect of Qingyi decoction(QYD)in SAP.METHODS A rat model of SAP was created via retrograde infusion of sodium deoxycholate.Serum levels of amylase,tumor necrosis factor(TNF-α),interleukin(IL)-6,D-lactic acid,and diamine oxidase(DAO);histological changes;and apoptosis of IECs were examined in rats with or without QYD treatment.The expression of the two subunits of CaN and NFAT in intestinal tissue was measured via quantitative realtime polymerase chain reaction and western blotting.For in vitro studies,Caco-2 cells were treated with lipopolysaccharide(LPS)and QYD serum,and then cell viability and intracellular calcium levels were detected.RESULTS Retrograde infusion of sodium deoxycholate increased the severity of pancreatic and intestinal pathology and the levels of serum amylase,TNF-α,and IL-6.Both the indicators of intestinal mucosa damage(D-lactic acid and DAO)and the levels of IEC apoptosis were elevated in the SAP group.QYD treatment reduced the serum levels of amylase,TNF-α,IL-6,D-lactic acid,and DAO and attenuated the histological findings.IEC apoptosis associated with SAP was ameliorated under QYD treatment.In addition,the protein expression levels of the two subunits of CaN were remarkably elevated in the SAP group,and the NFATc3 gene was significantly upregulated at both the transcript and protein levels in the SAP group compared with the control group.QYD significantly restrained CaN and NFATc3 gene expression in the intestine,which was upregulated in the SAP group.Furthermore,QYD serum significantly decreased the LPS-induced elevation in intracellular free Ca^(2+)levels and inhibited cell death.CONCLUSION QYD can exert protective effects against intestinal mucosa damage caused by SAP and the protective effects are mediated,at least partially,by restraining IEC apoptosis via the CaN/NFATc3 pathway.展开更多
BACKGROUND 3,6-dichlorobenzo[b]thiophene-2-carboxylic acid(BT2)is a benzothiophene carboxylate derivative that can suppress the catabolism of branched-chain amino acid(BCAA)-associated mammalian target of rapamycin co...BACKGROUND 3,6-dichlorobenzo[b]thiophene-2-carboxylic acid(BT2)is a benzothiophene carboxylate derivative that can suppress the catabolism of branched-chain amino acid(BCAA)-associated mammalian target of rapamycin complex 1(mTORC1)activation.Previous studies have demonstrated the therapeutic effects of BT2 on arthritis,liver cancer,and kidney injury.However,the effects of BT2 on ulcerative colitis(UC)are unknown.AIM To investigate the anti-UC effects of BT2 and the underlying mechanism.METHODS Mouse UC models were created through the administration of 3.5%dextran sodium sulfate(DSS)for 7 d.The mice in the treated groups were administered salazosulfapyridine(300 mg/kg)or BT2(20 mg/kg)orally from day 1 to day 7.At the end of the study,all of the mice were sacrificed,and colon tissues were removed for hematoxylin and eosin staining,immunoblot analyses,and immunohistochemical assays.Cytokine levels were measured by flow cytometry.The contents of BCAAs including valine,leucine,and isoleucine,in mouse serum were detected by liquid chromatography-tandem mass spectrometry,and the abundance of intestinal flora was analyzed by 16S ribosomal DNA sequencing.RESULTS Our results revealed that BT2 significantly ameliorated the inflammatory symptoms and pathological damage induced by DSS in mice.BT2 also reduced the production of the proinflammatory cytokines interleukin 6(IL-6),IL-9,and IL-2 and increased the anti-inflammatory cytokine IL-10 level.In addition,BT2 notably improved BCAA catabolism and suppressed mTORC1 activation and cyclooxygenase-2 expression in the colon tissues of UC mice.Furthermore,highthroughput sequencing revealed that BT2 restored the gut microbial abundance and diversity in mice with colitis.Compared with the DSS group,BT2 treatment increased the ratio of Firmicutes to Bacteroidetes and decreased the abundance of Enterobacteriaceae and Escherichia-Shigella.CONCLUSION Our results indicated that BT2 significantly ameliorated DSS-induced UC and that the latent mechanism involved the suppression of BCAA-associated mTORC1 activation and modulation of the intestinal flora.展开更多
In this paper,a visible light-responsive Sn^(2+)and N co-doped TiO_(2)photocatalyst was prepared by facile one-pot hydrothermal method.All as-prepared samples were characterized in detail by a series of characterizati...In this paper,a visible light-responsive Sn^(2+)and N co-doped TiO_(2)photocatalyst was prepared by facile one-pot hydrothermal method.All as-prepared samples were characterized in detail by a series of characterization approaches.The results showed that the Sn^(2+)and N elements were co-doped into TiO_(2),while the catalyst still maintains anatase crystal structure and gets irregular little nanocluster in diameter of 9–10 nm with higher specific surface area.The absorption edge of Sn^(2+)and N co-doped TiO_(2)extends to the visible light region.Compared with Sn^(2+)-doped TiO_(2)and N-TiO_(2),the absorption edges have obvious red-shift of about 50 and 70 nm,respectively.The synergistic effect of O 2p-N 2p and O 2p-Sn 5s hybridization to form impurity levels is the main reason for the red-shift.The hydrogen production performance of the Sn^(2+)and N co-doping TiO_(2)(n(N)/n(Ti)=1)catalyst reached the maximum value of 0.37 mmol·h^(-1)·g^(-1)under visible light,which is higher than that of N-doped TiO_(2)and SnTiO_(2)-doped TiO_(2)singly.This result is due to the wider visible light region-responsive ability of Sn^(2+)and N codoped into TiO_(2).Furthermore,mild hydrothermal methods will not make the Sn^(2+)oxidized to Sn^(4+),which make the catalysts still maintain high photocatalytic performance.This work provides a simple and mild method for the preparation of dual-element co-doped TiO_(2)with high crystallinity,excellent performance and broad application prospects.展开更多
Antibacterial thermoplastic polyurethane (TPU) electrospun fiber mats were prepared by adsorption of Ag nanoparticles (Ag NPs) onto TPU/3-aminopropyltriethoxysilane (APS) co-electrospun fiber mats from silver so...Antibacterial thermoplastic polyurethane (TPU) electrospun fiber mats were prepared by adsorption of Ag nanoparticles (Ag NPs) onto TPU/3-aminopropyltriethoxysilane (APS) co-electrospun fiber mats from silver sol. The use of APS can functionalize TPU fibers with amino groups, facilitating the adsorption of Ag NPs. The effects of pH of silver sol and APS content on Ag NP adsorption and antibacterial activity were investigated. Ag NP adsorption was evidenced by TEM, XPS and TGA. Significant Ag NP adsorption occurred at pH = 3-5, The main driving force for Ag NP adsorption is electrostatic interaction between --NH3^+ of the fibers and --COO- derived from the --COOH group capped on the surfaces of Ag NPs. The antibacterial activity of the Ag NP-decorated TPU/APS fiber mats was investigated using both gram-negative Escherichia coli and gram-positive Bacillus subtilis. The antibacterial rate increases with increasing APS content up to 5% where the antibacterial rates against both types of bacteria are over 99.9%.展开更多
The polypropylene/glass fiber(PP/GF) composites with excellent antistatic performance and improved mechanical properties have been reported by incorporation of a very small amount of the organic salt, lithium bis(t...The polypropylene/glass fiber(PP/GF) composites with excellent antistatic performance and improved mechanical properties have been reported by incorporation of a very small amount of the organic salt, lithium bis(trifluoromethanesulfonyl)imide(Li-TFSI), into the PP/GF composites. It was considered that GF could play the role as the pathways for the movements of ions in the ternary composites. In this work, the interactions between Li-TFSI and glass fiber and the effects of such interactions on the physical properties of the composites have been systematically investigated. Three types of glass fibers with different ―OH group concentrations have been prepared in order to compare the interactions between GF and Li-TFSI. It was found that the ―OH group concentrations on the surface of glass fiber have significant effects on interactions between glass fibers and Li-TFSI. Such interactions are crucial for both the antistatic and mechanical performances of the final PP/GF/Li-TFSI composites. The investigation indicated that the GF with high ―OH group concentrations confined the movement of TFSI-, which decreased the antistatic properties of PP/GF/Li-TFSI composites. On the other hand, the GF with low ―OH group concentrations inhibited the absorption of Li-TFSI onto the GF, which also hindered the formation of Li-TFSI conductive pathway. The best antistatic performance of the ternary composites can be achieved at the intermediate ―OH concentrations on the GF.展开更多
We have summarized our recent work in the area of novel silica-based optical fibers, which can be classified into two types: silica optical fiber doped with special elements including Bi, Al, and Ce, and micro-structu...We have summarized our recent work in the area of novel silica-based optical fibers, which can be classified into two types: silica optical fiber doped with special elements including Bi, Al, and Ce, and micro-structured multi-core fibers. For element-doped optical fiber, the Bi/Al co-doped silica fibers could exhibit a fluorescence spectrum covering the wavelength range between 1000 and 1400 nm with a full width at half maximum(FWHM) of about 150 nm, which enables its use in fiber amplifiers and laser systems. The Ce-doped fiber's center wavelengths of excitation and emission are about 340 and 430 nm, respectively. The sapphire-derived fiber(SDF) with high alumina dopant concentration in the core can form mullite through heating and cooling with arc-discharge treatment. This SDF can be further developed for an intrinsic Fabry-Perot interferometric that can withstand 1200 ℃, which allows it to be used in high-temperature sensing applications. Owing to the strong evanescent field, microstructured multi-core fiber can be used in a wide range of applications in biological fiber optic sensing, chemical measurement, and interference-related devices. Coaxial-core optical fiber is another novel kind of silica-based optical fiber that has two coaxial waveguide cores and can be used for optical trapping and micro-particle manipulation by generating a highly focused conical optical field. The recent developments of these novel fibers are discussed.展开更多
基金the National Natural Science Foundation of China(Key Project),No.82030123(to LDC)the Science and Technology Platform Construction Project of Fujian Science and Technology Department,No.2018Y2002(to LDC)。
文摘Blood exosomes,which are extracellular vesicles secreted by living cells into the circulating blood,are regarded as a relatively noninvasive novel tool for monitoring brain physiology and disease states.An increasing number of blood cargo-loaded exosomes are emerging as potential biomarkers for preclinical and clinical Alzheimer's disease.Therefo re,we conducted a meta-analysis and systematic review of molecular biomarkers derived from blood exosomes to comprehensively analyze their diagnostic performance in preclinical Alzheimer's disease,mild cognitive impairment,and Alzheimer's disease.We performed a literature search in PubMed,Web of Science,Embase,and Cochrane Library from their inception to August 15,2020.The research subjects mainly included Alzheimer's disease,mild cognitive impairment,and preclinical Alzheimer's disease.We identified 34 observational studies,of which 15 were included in the quantitative analysis(Newcastle-Ottawa Scale score 5.87 points)and 19 were used in the qualitative analysis.The meta-analysis results showed that core biomarkers including Aβ_(1-42),P-T181-tau,P-S396-tau,and T-tau were increased in blood neuro nderived exosomes of preclinical Alzheimer's disease,mild cognitive impairment,and Alzheimer's disease patients.M olecules related to additional risk facto rs that are involved in neuroinflammation(C1q),metabolism disorder(P-S312-IRS-1),neurotrophic deficiency(HGF),vascular injury(VEGF-D),and autophagy-lysosomal system dysfunction(cathepsin D)were also increased.At the gene level,the differential expression of transc ription-related factors(REST)and microRNAs(miR-132)also affects RNA splicing,transport,and translation.These pathological changes contribute to neural loss and synaptic dysfunction.The data confirm that the above-mentioned core molecules and additional ris k-related factors in blood exosomes can serve as candidate biomarkers for preclinical and clinical Alzheimer's disease.These findings support further development of exosome biomarkers for a clinical blood test for Alzheimer's disease.This meta-analysis was registered at the International Prospective Register of Systematic Reviews(Registration No.CRD4200173498,28/04/2020).
基金Supported by the National Key R and D Program of China,No.2019YFE0119300National Natural Science Foundation of China,No.82074158+2 种基金Project funded by China Postdoctoral Science Foundation,No.2018M631793Natural Science Foundation of Liaoning Province,No.2019-ZD-0624Dalian Traditional Chinese Medicine-Related Scientific Research Project,No.18Z2002.
文摘BACKGROUND Recent studies have demonstrated that dysfunction of the intestinal barrier is a significant contributing factor to the development of severe acute pancreatitis(SAP).A stable intestinal mucosa barrier functions as a major anatomic and functional barrier,owing to the balance between intestinal epithelial cell(IEC)proliferation and apoptosis.There is some evidence that calcium overload may trigger IEC apoptosis and that calcineurin(CaN)/nuclear factor of activated Tcells(NFAT)signaling might play an important role in calcium-mediated apoptosis.AIM To investigate the potential mechanisms underlying the therapeutic effect of Qingyi decoction(QYD)in SAP.METHODS A rat model of SAP was created via retrograde infusion of sodium deoxycholate.Serum levels of amylase,tumor necrosis factor(TNF-α),interleukin(IL)-6,D-lactic acid,and diamine oxidase(DAO);histological changes;and apoptosis of IECs were examined in rats with or without QYD treatment.The expression of the two subunits of CaN and NFAT in intestinal tissue was measured via quantitative realtime polymerase chain reaction and western blotting.For in vitro studies,Caco-2 cells were treated with lipopolysaccharide(LPS)and QYD serum,and then cell viability and intracellular calcium levels were detected.RESULTS Retrograde infusion of sodium deoxycholate increased the severity of pancreatic and intestinal pathology and the levels of serum amylase,TNF-α,and IL-6.Both the indicators of intestinal mucosa damage(D-lactic acid and DAO)and the levels of IEC apoptosis were elevated in the SAP group.QYD treatment reduced the serum levels of amylase,TNF-α,IL-6,D-lactic acid,and DAO and attenuated the histological findings.IEC apoptosis associated with SAP was ameliorated under QYD treatment.In addition,the protein expression levels of the two subunits of CaN were remarkably elevated in the SAP group,and the NFATc3 gene was significantly upregulated at both the transcript and protein levels in the SAP group compared with the control group.QYD significantly restrained CaN and NFATc3 gene expression in the intestine,which was upregulated in the SAP group.Furthermore,QYD serum significantly decreased the LPS-induced elevation in intracellular free Ca^(2+)levels and inhibited cell death.CONCLUSION QYD can exert protective effects against intestinal mucosa damage caused by SAP and the protective effects are mediated,at least partially,by restraining IEC apoptosis via the CaN/NFATc3 pathway.
基金Supported by National Natural Science Foundation of ChinaNo. 82074241+1 种基金Project of Jiangsu Province Hospital of Traditional Chinese Medicine Peak TalentNo. y2021rc36
文摘BACKGROUND 3,6-dichlorobenzo[b]thiophene-2-carboxylic acid(BT2)is a benzothiophene carboxylate derivative that can suppress the catabolism of branched-chain amino acid(BCAA)-associated mammalian target of rapamycin complex 1(mTORC1)activation.Previous studies have demonstrated the therapeutic effects of BT2 on arthritis,liver cancer,and kidney injury.However,the effects of BT2 on ulcerative colitis(UC)are unknown.AIM To investigate the anti-UC effects of BT2 and the underlying mechanism.METHODS Mouse UC models were created through the administration of 3.5%dextran sodium sulfate(DSS)for 7 d.The mice in the treated groups were administered salazosulfapyridine(300 mg/kg)or BT2(20 mg/kg)orally from day 1 to day 7.At the end of the study,all of the mice were sacrificed,and colon tissues were removed for hematoxylin and eosin staining,immunoblot analyses,and immunohistochemical assays.Cytokine levels were measured by flow cytometry.The contents of BCAAs including valine,leucine,and isoleucine,in mouse serum were detected by liquid chromatography-tandem mass spectrometry,and the abundance of intestinal flora was analyzed by 16S ribosomal DNA sequencing.RESULTS Our results revealed that BT2 significantly ameliorated the inflammatory symptoms and pathological damage induced by DSS in mice.BT2 also reduced the production of the proinflammatory cytokines interleukin 6(IL-6),IL-9,and IL-2 and increased the anti-inflammatory cytokine IL-10 level.In addition,BT2 notably improved BCAA catabolism and suppressed mTORC1 activation and cyclooxygenase-2 expression in the colon tissues of UC mice.Furthermore,highthroughput sequencing revealed that BT2 restored the gut microbial abundance and diversity in mice with colitis.Compared with the DSS group,BT2 treatment increased the ratio of Firmicutes to Bacteroidetes and decreased the abundance of Enterobacteriaceae and Escherichia-Shigella.CONCLUSION Our results indicated that BT2 significantly ameliorated DSS-induced UC and that the latent mechanism involved the suppression of BCAA-associated mTORC1 activation and modulation of the intestinal flora.
基金This study was financially supported by the Natural Science Foundation of China(No.21663009)the National Key R&D Projects of China(No.2018YFC1801706-01)the Science and Technology Supporting Project of Guizhou Province(Nos.[2019]2835 and[2021]480).
文摘In this paper,a visible light-responsive Sn^(2+)and N co-doped TiO_(2)photocatalyst was prepared by facile one-pot hydrothermal method.All as-prepared samples were characterized in detail by a series of characterization approaches.The results showed that the Sn^(2+)and N elements were co-doped into TiO_(2),while the catalyst still maintains anatase crystal structure and gets irregular little nanocluster in diameter of 9–10 nm with higher specific surface area.The absorption edge of Sn^(2+)and N co-doped TiO_(2)extends to the visible light region.Compared with Sn^(2+)-doped TiO_(2)and N-TiO_(2),the absorption edges have obvious red-shift of about 50 and 70 nm,respectively.The synergistic effect of O 2p-N 2p and O 2p-Sn 5s hybridization to form impurity levels is the main reason for the red-shift.The hydrogen production performance of the Sn^(2+)and N co-doping TiO_(2)(n(N)/n(Ti)=1)catalyst reached the maximum value of 0.37 mmol·h^(-1)·g^(-1)under visible light,which is higher than that of N-doped TiO_(2)and SnTiO_(2)-doped TiO_(2)singly.This result is due to the wider visible light region-responsive ability of Sn^(2+)and N codoped into TiO_(2).Furthermore,mild hydrothermal methods will not make the Sn^(2+)oxidized to Sn^(4+),which make the catalysts still maintain high photocatalytic performance.This work provides a simple and mild method for the preparation of dual-element co-doped TiO_(2)with high crystallinity,excellent performance and broad application prospects.
基金financially supported by the National Natural Science Foundation of China(No.51173093)
文摘Antibacterial thermoplastic polyurethane (TPU) electrospun fiber mats were prepared by adsorption of Ag nanoparticles (Ag NPs) onto TPU/3-aminopropyltriethoxysilane (APS) co-electrospun fiber mats from silver sol. The use of APS can functionalize TPU fibers with amino groups, facilitating the adsorption of Ag NPs. The effects of pH of silver sol and APS content on Ag NP adsorption and antibacterial activity were investigated. Ag NP adsorption was evidenced by TEM, XPS and TGA. Significant Ag NP adsorption occurred at pH = 3-5, The main driving force for Ag NP adsorption is electrostatic interaction between --NH3^+ of the fibers and --COO- derived from the --COOH group capped on the surfaces of Ag NPs. The antibacterial activity of the Ag NP-decorated TPU/APS fiber mats was investigated using both gram-negative Escherichia coli and gram-positive Bacillus subtilis. The antibacterial rate increases with increasing APS content up to 5% where the antibacterial rates against both types of bacteria are over 99.9%.
基金financially supported by the National Natural Science Foundation of China(Nos.21674033 and 51173036)
文摘The polypropylene/glass fiber(PP/GF) composites with excellent antistatic performance and improved mechanical properties have been reported by incorporation of a very small amount of the organic salt, lithium bis(trifluoromethanesulfonyl)imide(Li-TFSI), into the PP/GF composites. It was considered that GF could play the role as the pathways for the movements of ions in the ternary composites. In this work, the interactions between Li-TFSI and glass fiber and the effects of such interactions on the physical properties of the composites have been systematically investigated. Three types of glass fibers with different ―OH group concentrations have been prepared in order to compare the interactions between GF and Li-TFSI. It was found that the ―OH group concentrations on the surface of glass fiber have significant effects on interactions between glass fibers and Li-TFSI. Such interactions are crucial for both the antistatic and mechanical performances of the final PP/GF/Li-TFSI composites. The investigation indicated that the GF with high ―OH group concentrations confined the movement of TFSI-, which decreased the antistatic properties of PP/GF/Li-TFSI composites. On the other hand, the GF with low ―OH group concentrations inhibited the absorption of Li-TFSI onto the GF, which also hindered the formation of Li-TFSI conductive pathway. The best antistatic performance of the ternary composites can be achieved at the intermediate ―OH concentrations on the GF.
基金Project supported by the National Natural Science Foundation of China(Nos.61735009,61535004,and 61827819)
文摘We have summarized our recent work in the area of novel silica-based optical fibers, which can be classified into two types: silica optical fiber doped with special elements including Bi, Al, and Ce, and micro-structured multi-core fibers. For element-doped optical fiber, the Bi/Al co-doped silica fibers could exhibit a fluorescence spectrum covering the wavelength range between 1000 and 1400 nm with a full width at half maximum(FWHM) of about 150 nm, which enables its use in fiber amplifiers and laser systems. The Ce-doped fiber's center wavelengths of excitation and emission are about 340 and 430 nm, respectively. The sapphire-derived fiber(SDF) with high alumina dopant concentration in the core can form mullite through heating and cooling with arc-discharge treatment. This SDF can be further developed for an intrinsic Fabry-Perot interferometric that can withstand 1200 ℃, which allows it to be used in high-temperature sensing applications. Owing to the strong evanescent field, microstructured multi-core fiber can be used in a wide range of applications in biological fiber optic sensing, chemical measurement, and interference-related devices. Coaxial-core optical fiber is another novel kind of silica-based optical fiber that has two coaxial waveguide cores and can be used for optical trapping and micro-particle manipulation by generating a highly focused conical optical field. The recent developments of these novel fibers are discussed.