期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Semi-empirical and semi-quantitative lightweight shielding design method 被引量:3
1
作者 Song-Chuan Zheng Qing-Quan Pan +2 位作者 huan-wen lv Song-Qian Tang Xiao-Jing Liu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第3期109-124,共16页
The lightweight shielding design of small reactors is a popular research topic.Based on a small helium-xenon-cooled solid reactor,the effects of neutron and photon shielding sequence and the number of shielding layers... The lightweight shielding design of small reactors is a popular research topic.Based on a small helium-xenon-cooled solid reactor,the effects of neutron and photon shielding sequence and the number of shielding layers on the radiation dose were first studied.It was found that when photons were shielded first and the number of shielding layers was odd,the radiation dose could be significantly reduced.To reduce the weight of the shielding body,the relative thickness of the shielding layers was optimized using the genetic algorithm.The optimized scheme can reduce the radiation dose by up to 57%and reduce the weight by 11.84%.To determine the total thickness of the shielding layers and avoid the local optimal solution of the genetic algorithm,a series of formulas that describes the relationship between the total thickness and the radiation dose was developed through large-scale calculations.A semi-empirical and semi-quantitative lightweight shielding design method is proposed to integrate the above shielding optimization method that verified by the Monte Carlo method.Finally,a code,SDIC1.0,was developed to achieve the optimized lightweight shielding design for small reactors.It was verified that the difference between the SDIC1.0 and the RMC code is approximately 10%and that the computation time is shortened by 6.3 times. 展开更多
关键词 Small reactor LIGHTWEIGHT Shielding calculation Genetic algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部