针对深施型液肥穴施肥机存在损伤作物、穴口宽度大和喷肥效率低等问题,设计了一种深施型斜置式液肥穴施肥机。基于斜置式扎穴和参数反求求解设计思想,借助人机交互平台,设计关键部件扎穴机构,优化了机构的结构与工作参数,分析了喷肥针...针对深施型液肥穴施肥机存在损伤作物、穴口宽度大和喷肥效率低等问题,设计了一种深施型斜置式液肥穴施肥机。基于斜置式扎穴和参数反求求解设计思想,借助人机交互平台,设计关键部件扎穴机构,优化了机构的结构与工作参数,分析了喷肥针进肥接口运动轨迹。根据喷肥针入土、出土喷肥技术特点,运用差动轮系传动和空间凸轮机构的组合传动形式,设计了关键部件液肥分配机构,减少了输肥管路复杂的连接配置,构建了出肥软管接口运动模型,解析了满足于进肥软管接口协同运动机理。进行了深施型斜置式液肥穴施肥机田间性能检测试验,结果表明,该机扎穴性能优越,肥料喷射均匀,对作物的机械损伤小,穴口宽度、作物损伤率、施肥量和施肥深度分别为45.0 mm、0.3%、28.5 m L/次和102 mm,各项指标与前期设计差异较小,且符合农艺要求。展开更多
A ripple surface type pickup finger was designed to improve the performance of pickup finger precision maize seed metering device and to provide a solution for precision maize planter.The main structure and working pr...A ripple surface type pickup finger was designed to improve the performance of pickup finger precision maize seed metering device and to provide a solution for precision maize planter.The main structure and working principle of seed metering device were detailed in this paper.The dimension size distributions of maize seeds in different types were studied,the gestures of seeds clamped by pickup finger were analyzed,and the clamping dynamical model of pickup finger was established by theoretical analysis.To optimize the structural parameters of ripple surface type pickup finger,the discrete element method(DEM)model of pickup finger precision maize seed metering device was established by the discrete element software EDEM.The numerical simulations of orthogonal seeding performance experiments were conducted to analyze the influences of these factors on the quality of seeding.The rotational speed,wavelength of ripple surface and amplitude of ripple surface were selected as the experimental factors.The average seeding qualified index and the average seeding coefficient of variation on four different types of maize seeds were chosen for evaluating the seeding performance.The results showed that,the average seeding qualified index was 93.35%and the average seeding coefficient of variation was 11.23%under conditions of the 25 r/min rotational speed,8 mm wavelength of ripple surface and 2 mm amplitude of ripple surface.Under the same condition,the bench test was done which showed that the results of test and simulation were consistent.The maximum error of qualified index was 1.95%and the qualified index of improved seed metering device exceeded the original one by 12.34%.The working performance can meet the requirements of precision maize seeding.展开更多
文摘针对深施型液肥穴施肥机存在损伤作物、穴口宽度大和喷肥效率低等问题,设计了一种深施型斜置式液肥穴施肥机。基于斜置式扎穴和参数反求求解设计思想,借助人机交互平台,设计关键部件扎穴机构,优化了机构的结构与工作参数,分析了喷肥针进肥接口运动轨迹。根据喷肥针入土、出土喷肥技术特点,运用差动轮系传动和空间凸轮机构的组合传动形式,设计了关键部件液肥分配机构,减少了输肥管路复杂的连接配置,构建了出肥软管接口运动模型,解析了满足于进肥软管接口协同运动机理。进行了深施型斜置式液肥穴施肥机田间性能检测试验,结果表明,该机扎穴性能优越,肥料喷射均匀,对作物的机械损伤小,穴口宽度、作物损伤率、施肥量和施肥深度分别为45.0 mm、0.3%、28.5 m L/次和102 mm,各项指标与前期设计差异较小,且符合农艺要求。
基金the National Science and Technology Support Plan Project(2014BAD06B04).
文摘A ripple surface type pickup finger was designed to improve the performance of pickup finger precision maize seed metering device and to provide a solution for precision maize planter.The main structure and working principle of seed metering device were detailed in this paper.The dimension size distributions of maize seeds in different types were studied,the gestures of seeds clamped by pickup finger were analyzed,and the clamping dynamical model of pickup finger was established by theoretical analysis.To optimize the structural parameters of ripple surface type pickup finger,the discrete element method(DEM)model of pickup finger precision maize seed metering device was established by the discrete element software EDEM.The numerical simulations of orthogonal seeding performance experiments were conducted to analyze the influences of these factors on the quality of seeding.The rotational speed,wavelength of ripple surface and amplitude of ripple surface were selected as the experimental factors.The average seeding qualified index and the average seeding coefficient of variation on four different types of maize seeds were chosen for evaluating the seeding performance.The results showed that,the average seeding qualified index was 93.35%and the average seeding coefficient of variation was 11.23%under conditions of the 25 r/min rotational speed,8 mm wavelength of ripple surface and 2 mm amplitude of ripple surface.Under the same condition,the bench test was done which showed that the results of test and simulation were consistent.The maximum error of qualified index was 1.95%and the qualified index of improved seed metering device exceeded the original one by 12.34%.The working performance can meet the requirements of precision maize seeding.