This paper focuses on how to build the model of precision fire hazard divisions in the level of forest resources sub-compartment.Based on 3D GIS technology and characteristics of forest fires in collective forest of s...This paper focuses on how to build the model of precision fire hazard divisions in the level of forest resources sub-compartment.Based on 3D GIS technology and characteristics of forest fires in collective forest of southern China,this study utilized Lin’an City,Zhejiang Province as the experimental area.Forest fire factors were divided into 11 indexes from the three categories(social and economic factors,forestry characteristics,and meteorological characteristics) and weighted for analysis.Next,three eigenvectors(one for each category) were created to build a nonlinear mathematical model called precision fire hazard divisions for forests.Then,the model was used to optimize and test forest fire hazard divisions with the least squares.Results showed that experimental and theoretical values of error were less than 0.1. Thus,in the experimental area this model and the fire occurrence history matched.展开更多
文摘This paper focuses on how to build the model of precision fire hazard divisions in the level of forest resources sub-compartment.Based on 3D GIS technology and characteristics of forest fires in collective forest of southern China,this study utilized Lin’an City,Zhejiang Province as the experimental area.Forest fire factors were divided into 11 indexes from the three categories(social and economic factors,forestry characteristics,and meteorological characteristics) and weighted for analysis.Next,three eigenvectors(one for each category) were created to build a nonlinear mathematical model called precision fire hazard divisions for forests.Then,the model was used to optimize and test forest fire hazard divisions with the least squares.Results showed that experimental and theoretical values of error were less than 0.1. Thus,in the experimental area this model and the fire occurrence history matched.