Diabetes-associated cognitive dysfunction has already been attracted considerable attention.Advanced glycation end products(AGEs)from daily diets are thought to be a vital contributor to the development of this diseas...Diabetes-associated cognitive dysfunction has already been attracted considerable attention.Advanced glycation end products(AGEs)from daily diets are thought to be a vital contributor to the development of this diseases.However,the effect of one of the best-characterized exogenous AGEs N^(ε)-(carboxymethyl)lysine(CML)on cognitive function is not fully reported.In the present study,diabetical Goto-Kakizaki(GK)rats were treated with free CML for 8-weeks.It was found that oral consumption of exogenous CML significantly aggravated diabetes-associated cognitive dysfunction in behavioral test.In details,exogenous CML increased levels of oxidative stress,promoted the activation of glial cells in the brain,up-regulated the release of inflammatory cytokines interleukin-6,inhibited the protein expression of the brain-derived neurotrophic factor and thus led to neuroinflammation.Furthermore,exogenous CML promoted the amyloidogenesis in the brain of GK rats,and inhibited the expression of GLUT4.Additionally,several tricarboxylic acid cycle and glutamate-glutamine/γ-aminobutyric acid cycle intermediates including pyruvate,succinic acid,glutamine,glutamate were significantly changed in brain of GK rats treated with exogenous free CML.In conclusion,exogenous free CML is a potentially noxious compounds led to aggravated diabetes-associated cognitive dysfunction which could be possibly explained by its effects on neuroinflammation,energy and neurotransmitter amino acid homeostasis.展开更多
AIM:To investigate the biomechanical properties and practical application of absorbable materials in orbital fracture repair.METHODS:The three-dimensional(3D)model of orbital blowout fractures was reconstructed using ...AIM:To investigate the biomechanical properties and practical application of absorbable materials in orbital fracture repair.METHODS:The three-dimensional(3D)model of orbital blowout fractures was reconstructed using Mimics21.0 software.The repair guide plate model for inferior orbital wall fracture was designed using 3-matic13.0 and Geomagic wrap 21.0 software.The finite element model of orbital blowout fracture and absorbable repair plate was established using 3-matic13.0 and ANSYS Workbench 21.0 software.The mechanical response of absorbable plates,with thicknesses of 0.6 and 1.2 mm,was modeled after their placement in the orbit.Two patients with inferior orbital wall fractures volunteered to receive single-layer and double-layer absorbable plates combined with 3D printing technology to facilitate surgical treatment of orbital wall fractures.RESULTS:The finite element models of orbital blowout fracture and absorbable plate were successfully established.Finite element analysis(FEA)showed that when the Young’s modulus of the absorbable plate decreases to 3.15 MPa,the repair material with a thickness of 0.6 mm was influenced by the gravitational forces of the orbital contents,resulting in a maximum total deformation of approximately 3.3 mm.Conversely,when the absorbable plate was 1.2 mm thick,the overall maximum total deformation was around 0.4 mm.The half-year follow-up results of the clinical cases confirmed that the absorbable plate with a thickness of 1.2 mm had smaller maximum total deformation and better clinical efficacy.CONCLUSION:The biomechanical analysis observations in this study are largely consistent with the clinical situation.The use of double-layer absorbable plates in conjunction with 3D printing technology is recommended to support surgical treatment of infraorbital wall blowout fractures.展开更多
The method of energy dispersion in magnetic field is used to analyze the energy spread of the triple-pulse electron beam generated by the Dragon-II linear induction accelerator.A sector magnet is applied for energy an...The method of energy dispersion in magnetic field is used to analyze the energy spread of the triple-pulse electron beam generated by the Dragon-II linear induction accelerator.A sector magnet is applied for energy analysis of the electron beam,with a bending radius of 300 mm and a deflection angle of 90°.For each pulse,the time-resolved and integral images of the electron position at the output port of beam-bending line are recorded by a streak camera and a CCD camera,respectively.Experimental results demonstrate an energy spread of less than ±2.0%for the electron pulses.The cavity voltage waveforms obtained by different detectors are also analyzed for comparison.展开更多
Photo ionization plays a critical role in the formation and propagation of atmospheric pressure plasma jet plumes.But in experiments,it is very difficult to observe the photo ionization due to its relative lower densi...Photo ionization plays a critical role in the formation and propagation of atmospheric pressure plasma jet plumes.But in experiments,it is very difficult to observe the photo ionization due to its relative lower density of photo electrons.In the present study,we develop a portable cold air plasma jet device and observe the ionization wave in adc spark air plasma jet.The discharge images acquired by an ICCD camera show that the ionization wave front performs as a quickly moving bright ball.Breakdown could take place at another side of the quartz plate or pork tissue layer(6 mm thick),which suggests that the ionization should be attributed to photo ionization.The laser schlieren images indicate there is propagation of a shock wave along with the plasma bullet.Based on the photo ionization theory and the photo-electric measurement,the direct photo ionization and multistage photo ionization are the main factors in charge of generating the cold air plasma jet.In addition,the plasma jet outside of the cathode nozzle is colder than 320 K and can be touched safely by a human.In view of the plasma jet including a large amount of active particles,such as NO,O,OH,emitted photons,etc,the proposed portable cold air plasma jet device could be qualified for plasma bio-medicine applications.展开更多
The vast majority of high-performance perovskite solar cells(PSCs) are based on a formamidinium lead iodide(FAPbI_(3))-dominant composition. Nevertheless, the FA-based perovskite films suffer from undesirable phase tr...The vast majority of high-performance perovskite solar cells(PSCs) are based on a formamidinium lead iodide(FAPbI_(3))-dominant composition. Nevertheless, the FA-based perovskite films suffer from undesirable phase transition and defects-induced non-ideal interfacial recombination, which significantly induces energy loss and hinders the improvement of device performance. Herein, we employed 4-fluorophenylmethylammonium iodide(F-PMAI) to modulate surface structure and energy level alignment of the FA-based perovskite films. The superior optoelectronic films were obtained with reduced trap density, pure α-phase FAPbI_(3) and favorable energy band bending. The lifetime of photogenerated charge carriers increased from 489.3 ns to 1010.6 ns, and a more “p-type” perovskite film was obtained by the post-treatment with F-PMAI. Following this strategy, we demonstrated an improved power conversion efficiency of 22.59% for the FA-based PSCs with an open-circuit voltage loss of 399 m V.展开更多
Different discharge morphologies in atmospheric Ar and He plasmas are excited by using a pulsed microwave hairpin resonator.Ar plasmas form an arched plasma plume at the opened end of the hairpin,whereas He plumes gen...Different discharge morphologies in atmospheric Ar and He plasmas are excited by using a pulsed microwave hairpin resonator.Ar plasmas form an arched plasma plume at the opened end of the hairpin,whereas He plumes generate only a contracted plasmas in between both tips of metal electrodes.Despite this different point,their discharge processes have three similar characteristics:(i)the ionization occurs at the main electrode firstly and then develops to the slave electrode,(ii)during the shrinking stage the middle domain of the discharge channels disappears at last,and(iii)even at zero power input(in between pulses)a weak light region always exists in the discharge channels.Both experimental results and electromagnetic simulations suggest that the discharge is resonantly excited by the local enhanced electric fields.In addition,Ar ionization and excitation energies are lower than those of He,the effect of Ar gas flow is far greater than that of He gas,and the contribution of accelerated electrons only locates at the domain with the strongest electric fields.These reasons could be used to interpret the different characteristic plume morphologies of the proposed atmospheric Ar and He plasmas.展开更多
A quantitative trait locus (QTL) that affects heading date (HD) and the number of spikelets per panicle (SPP) was previously identified in a small region on chromosome 7 in rice (Oryza sativa L.). In order to ...A quantitative trait locus (QTL) that affects heading date (HD) and the number of spikelets per panicle (SPP) was previously identified in a small region on chromosome 7 in rice (Oryza sativa L.). In order to further characterize the QTL region, near isogenic lines (NILs) were quickly obtained by self-crossing recombinant inbred line 189, which is heterozygous in the vicinity of the target region. The pleiotropic effects of QTL Ghd7.1 on plant height (PH), SPP, and HD, were validated using an NIL-F2 population. Ghd7.1 explained 50.2%, 45.3%, and 76.9% of phenotypic variation in PH, SPP, and HD, respectively. Ghd7.1 was precisely mapped to a 357-kb region on the basis of analysis of the progeny of the NIL-F2 population. Day-length treatment confirmed that Ghd7.1 is sensitive to photoperiod, with long days delaying heading up to 12.5 d. Identification of panicle initiation and development for the pair of NILs showed that Ghd7.1 elongated the photoperiod-sensitive phase more than 10 d, but did not change the basic vegetative phase and the reproductive growth phase. These findings indicated that Ghd7.1 regulates SPP by controlling the rate of panicle differentiation rather than the duration of panicle development.展开更多
This article is the ninth in the series of Fungal Diversity Notes,where 107 taxa distributed in three phyla,nine classes,31 orders and 57 families are described and illustrated.Taxa described in the present study incl...This article is the ninth in the series of Fungal Diversity Notes,where 107 taxa distributed in three phyla,nine classes,31 orders and 57 families are described and illustrated.Taxa described in the present study include 12 new genera,74 new species,three new combinations,two reference specimens,a re-circumscription of the epitype,and 15 records of sexualasexual morph connections,new hosts and new geographical distributions.Twelve new genera comprise Brunneofusispora,Brunneomurispora,Liua,Lonicericola,Neoeutypella,Paratrimmatostroma,Parazalerion,Proliferophorum,Pseudoastrosphaeriellopsis,Septomelanconiella,Velebitea and Vicosamyces.Seventy-four new species are Agaricus memnonius,A.langensis,Aleurodiscus patagonicus,Amanita flavoalba,A.subtropicana,Amphisphaeria mangrovei,Baorangia major,Bartalinia kunmingensis,Brunneofusispora sinensis,Brunneomurispora lonicerae,Capronia camelliaeyunnanensis,Clavulina thindii,Coniochaeta simbalensis,Conlarium thailandense,Coprinus trigonosporus,Liua muriformis,Cyphellophora filicis,Cytospora ulmicola,Dacrymyces invisibilis,Dictyocheirospora metroxylonis,Distoseptispora thysanolaenae,Emericellopsis koreana,Galiicola baoshanensis,Hygrocybe lucida,Hypoxylon teeravasati,Hyweljonesia indica,Keissleriella caraganae,Lactarius olivaceopallidus,Lactifluus midnapurensis,Lembosia brigadeirensis,Leptosphaeria urticae,Lonicericola hyaloseptispora,Lophiotrema mucilaginosis,Marasmiellus bicoloripes,Marasmius indojasminodorus,Micropeltis phetchaburiensis,Mucor orantomantidis,Murilentithecium lonicerae,Neobambusicola brunnea,Neoeutypella baoshanensis,Neoroussoella heveae,Neosetophoma lonicerae,Ophiobolus malleolus,Parabambusicola thysanolaenae,Paratrimmatostroma kunmingensis,Parazalerion indica,Penicillium dokdoense,Peroneutypa mangrovei,Phaeosphaeria cycadis,Phanerochaete australosanguinea,Plectosphaerella kunmingensis,Plenodomus artemisiae,P.lijiangensis,Proliferophorum thailandicum,Pseudoastrosphaeriellopsis kaveriana,Pseudohelicomyces menglunicus,Pseudoplagiostoma mangiferae,Robillarda mangiferae,Roussoella elaeicola,Russula choptae,R.uttarakhandia,Septomelanconiella thailandica,Spencermartinsia acericola,Sphaerellopsis isthmospora,Thozetella lithocarpi,Trechispora echinospora,Tremellochaete atlantica,Trichoderma koreanum,T.pinicola,T.rugulosum,Velebitea chrysotexta,Vicosamyces venturisporus,Wojnowiciella kunmingensis and Zopfiella indica.Three new combinations are Baorangia rufomaculata,Lanmaoa pallidorosea and Wojnowiciella rosicola.The reference specimens of Canalisporium kenyense and Tamsiniella labiosa are designated.The epitype of Sarcopeziza sicula is re-circumscribed based on cyto-and histochemical analyses.The sexual-asexual morph connection of Plenodomus sinensis is reported from ferns and Cirsium for the first time.In addition,the new host records and country records are Amanita altipes,A.melleialba,Amarenomyces dactylidis,Chaetosphaeria panamensis,Coniella vitis,Coprinopsis kubickae,Dothiorella sarmentorum,Leptobacillium leptobactrum var.calidus,Muyocopron lithocarpi,Neoroussoella solani,Periconia cortaderiae,Phragmocamarosporium hederae,Sphaerellopsis paraphysata and Sphaeropsis eucalypticola.展开更多
This is a continuity of a series of taxonomic papers where materials are examined,described and novel combinations are proposed where necessary to improve our traditional species concepts and provide updates on their ...This is a continuity of a series of taxonomic papers where materials are examined,described and novel combinations are proposed where necessary to improve our traditional species concepts and provide updates on their classification.In addition to extensive morphological descriptions and appropriate asexual and sexual connections,DNA sequence data are also analysed from concatenated datasets(rDNA,TEF-a,RBP2 and b-Tubulin)to infer phylogenetic relationships and substantiate systematic position of taxa within appropriate ranks.Wherever new species or combinations are being proposed,we apply an integrative approach(morphological and molecular data as well as ecological features wherever applicable).Notes on 125 fungal taxa are compiled in this paper,including eight new genera,101 new species,two new combinations,one neotype,four reference specimens,new host or distribution records for eight species and one alternative morphs.The new genera introduced in this paper are Alloarthopyrenia,Arundellina,Camarosporioides,Neomassaria,Neomassarina,Neotruncatella,Paracapsulospora and Pseudophaeosphaeria.The new species are Alfaria spartii,Alloarthopyrenia italica,Anthostomella ravenna,An.thailandica,Arthrinium paraphaeospermum,Arundellina typhae,Aspergillus koreanus,Asterina cynometrae,Bertiella ellipsoidea,Blastophorum aquaticum,Cainia globosa,Camarosporioides phragmitis,Ceramothyrium menglunense,Chaetosphaeronema achilleae,Chlamydotubeufia helicospora,Ciliochorella phanericola,Clavulinopsis aurantiaca,Colletotrichum insertae,Comoclathris italica,Coronophora myricoides,Cortinarius fulvescentoideus,Co.nymphatus,Co.pseudobulliardioides,Co.tenuifulvescens,Cunninghamella gigacellularis,Cyathus pyristriatus,Cytospora cotini,Dematiopleospora alliariae,De.cirsii,Diaporthe aseana,Di.garethjonesii,Distoseptispora multiseptata,Dis.tectonae,Dis.tectonigena,Dothiora buxi,Emericellopsis persica,Gloniopsis calami,Helicoma guttulatum,Helvella floriforma,H.oblongispora,Hermatomyces subiculosa,Juncaceicola italica,Lactarius dirkii,Lentithecium unicellulare,Le.voraginesporum,Leptosphaeria cirsii,Leptosphaeria irregularis,Leptospora galii,Le.thailandica,Lindgomyces pseudomadisonensis,Lophiotrema bambusae,Lo.fallopiae,Meliola citri-maximae,Minimelanolocus submersus,Montagnula cirsii,Mortierella fluviae,Muriphaeosphaeria ambrosiae,Neodidymelliopsis ranunculi,Neomassaria fabacearum,Neomassarina thailandica,Neomicrosphaeropsis cytisi,Neo.cytisinus,Neo.minima,Neopestalotiopsis cocoe¨s,Neopestalotiopsis musae,Neoroussoella lenispora,Neotorula submersa,Neotruncatella endophytica,Nodulosphaeria italica,Occultibambusa aquatica,Oc.chiangraiensis,Ophiocordyceps hemisphaerica,Op.lacrimoidis,Paracapsulospora metroxyli,Pestalotiopsis sequoiae,Peziza fruticosa,Pleurotrema thailandica,Poaceicola arundinis,Polyporus mangshanensis,Pseudocoleophoma typhicola,Pseudodictyosporium thailandica,Pseudophaeosphaeria rubi,Purpureocillium sodanum,Ramariopsis atlantica,Rhodocybe griseoaurantia,Rh.indica,Rh.luteobrunnea,Russula indoalba,Ru.pseudoamoenicolor,Sporidesmium aquaticivaginatum,Sp.olivaceoconidium,Sp.pyriformatum,Stagonospora forlicesenensis,Stagonosporopsis centaureae,Terriera thailandica,Tremateia arundicola,Tr.guiyangensis,Trichomerium bambusae,Tubeufia hyalospora,Tu.roseohelicospora and Wojnowicia italica.New combinations are given for Hermatomyces mirum and Pallidocercospora thailandica.A neotype is proposed for Cortinarius fulvescens.Reference specimens are given for Aquaphila albicans,Leptospora rubella,Platychora ulmi and Meliola pseudosasae,while new host or distribution records are provided for Diaporthe eres,Di.siamensis,Di.foeniculina,Dothiorella iranica,Do.sarmentorum,Do.vidmadera,Helvella tinta and Vaginatispora fuckelii,with full taxonomic details.An asexual state is also reported for the first time in Neoacanthostigma septoconstrictum.This paper contributes to a more comprehensive update and improved identification of many ascomycetes and basiodiomycetes.展开更多
This paper is a compilation of notes on 142 fungal taxa,including five new families,20 new genera,and 100 new species,representing a wide taxonomic and geographic range.The new families,Ascocylindricaceae,Caryosporace...This paper is a compilation of notes on 142 fungal taxa,including five new families,20 new genera,and 100 new species,representing a wide taxonomic and geographic range.The new families,Ascocylindricaceae,Caryosporaceae and Wicklowiaceae(Ascomycota)are introduced based on their distinct lineages and unique morphology.The new Dothideomycete genera Pseudomassariosphaeria(Amniculicolaceae),Heracleicola,Neodidymella and Pseudomicrosphaeriopsis(Didymellaceae),Pseudopithomyces(Didymosphaeriaceae),Brunneoclavispora,Neolophiostoma and Sulcosporium(Halotthiaceae),Lophiohelichrysum(Lophiostomataceae),Galliicola,Populocrescentia and Vagicola(Phaeosphaeriaceae),Ascocylindrica(Ascocylindricaceae),Elongatopedicellata(Roussoellaceae),Pseudoasteromassaria(Latoruaceae)and Pseudomonodictys(Macrodiplodiopsidaceae)are introduced.The newly described species of Dothideomycetes(Ascomycota)are Pseudomassariosphaeria bromicola(Amniculicolaceae),Flammeascoma lignicola(Anteagloniaceae),Ascocylindrica marina(Ascocylindricaceae),Lembosia xyliae(Asterinaceae),Diplodia crataegicola and Diplodia galiicola(Botryosphaeriaceae),Caryospora aquatica(Caryosporaceae),Heracleicola premilcurensis and Neodidymella thailandicum(Didymellaceae),Pseudopithomyces palmicola(Didymosphaeriaceae),Floricola viticola(Floricolaceae),Brunneoclavispora bambusae,Neolophiostoma pigmentatum and Sulcosporium thailandica(Halotthiaceae),Pseudoasteromassaria fagi(Latoruaceae),Keissleriella dactylidicola(Lentitheciaceae),Lophiohelichrysum helichrysi(Lophiostomataceae),Aquasubmersa japonica(Lophiotremataceae),Pseudomonodictys tectonae(Macrodiplodiopsidaceae),Microthyrium buxicola and Tumidispora shoreae(Microthyriaceae),Alloleptosphaeria clematidis,Allophaeosphaeria cytisi,Allophaeosphaeria subcylindrospora,Dematiopleospora luzulae,Entodesmium artemisiae,Galiicola pseudophaeosphaeria,Loratospora luzulae,Nodulosphaeria senecionis,Ophiosphaerella aquaticus,Populocrescentia forlicesenensis and Vagicola vagans(Phaeosphaeriaceae),Elongatopedicellata lignicola,Roussoella magnatum and Roussoella angustior(Roussoellaceae)and Shrungabeeja longiappendiculata(Tetraploasphaeriaceae).The new combinations Pseudomassariosphaeria grandispora,Austropleospora archidendri,Pseudopithomyces chartarum,Pseudopithomyces maydicus,Pseudopithomyces sacchari,Vagicola vagans,Punctulariopsis cremeoalbida and Punctulariopsis efibulata Dothideomycetes.The new genera Dictyosporella(Annulatascaceae),and Tinhaudeus(Halosphaeriaceae)are introduced in Sordariomycetes(Ascomycota)while Dictyosporella aquatica(Annulatascaceae),Chaetosphaeria rivularia(Chaetosphaeriaceae),Beauveria gryllotalpidicola and Beauveria loeiensis(Cordycipitaceae),Seimatosporium sorbi and Seimatosporium pseudorosarum(Discosiaceae),Colletotrichum aciculare,Colletotrichum fusiforme and Colletotrichum hymenocallidicola(Glomerellaceae),Tinhaudeus formosanus(Halosphaeriaceae),Pestalotiopsis subshorea and Pestalotiopsis dracaenea(Pestalotiopsiceae),Phaeoacremonium tectonae(Togniniaceae),Cytospora parasitica and Cytospora tanaitica(Valsaceae),Annulohypoxylon palmicola,Biscogniauxia effusae and Nemania fusoideis(Xylariaceae)are introduced as novel species to order Sordariomycetes.The newly described species of Eurotiomycetes are Mycocalicium hyaloparvicellulum(Mycocaliciaceae).Acarospora septentrionalis and Acarospora castaneocarpa(Acarosporaceae),Chapsa multicarpa and Fissurina carassensis(Graphidaceae),Sticta fuscotomentosa and Sticta subfilicinella(Lobariaceae)are newly introduced in class Lecanoromycetes.In class Pezizomycetes,Helvella pseudolacunosa and Helvella rugosa(Helvellaceae)are introduced as new species.The new families,Dendrominiaceae and Neoantrodiellaceae(Basidiomycota)are introduced together with a new genus Neoantrodiella(Neoantrodiellaceae),here based on both morphology coupled with molecular data.In the class Agaricomycetes,Agaricus pseudolangei,Agaricus haematinus,Agaricus atrodiscus and Agaricus exilissimus(Agaricaceae),Amanita melleialba,Amanita pseudosychnopyramis and Amanita subparvipantherina(Amanitaceae),Entoloma calabrum,Cora barbulata,Dictyonema gomezianum and Inocybe granulosa(Inocybaceae),Xerocomellus sarnarii(Boletaceae),Cantharellus eucalyptorum,Cantharellus nigrescens,Cantharellus tricolor and Cantharellus variabilicolor(Cantharellaceae),Cortinarius alboamarescens,Cortinarius brunneoalbus,Cortinarius ochroamarus,Cortinarius putorius and Cortinarius seidlii(Cortinariaceae),Hymenochaete micropora and Hymenochaete subporioides(Hymenochaetaceae),Xylodon ramicida(Schizoporaceae),Colospora andalasii(Polyporaceae),Russula guangxiensis and Russula hakkae(Russulaceae),Tremella dirinariae,Tremella graphidis and Tremella pyrenulae(Tremellaceae)are introduced.Four new combinations Neoantrodiella gypsea,Neoantrodiella thujae(Neoantrodiellaceae),Punctulariopsis cremeoalbida,Punctulariopsis efibulata(Punctulariaceae)are also introduced here for the division Basidiomycota.Furthermore Absidia caatinguensis,Absidia koreana and Gongronella koreana(Cunninghamellaceae),Mortierella pisiformis and Mortierella formosana(Mortierellaceae)are newly introduced in the Zygomycota,while Neocallimastix cameroonii and Piromyces irregularis(Neocallimastigaceae)are introduced in the Neocallimastigomycota.Reference specimens or changes in classification and notes are provided for Alternaria ethzedia,Cucurbitaria ephedricola,Austropleospora,Austropleospora archidendri,Byssosphaeria rhodomphala,Lophiostoma caulium,Pseudopithomyces maydicus,Massariosphaeria,Neomassariosphaeria and Pestalotiopsis montellica.展开更多
Species with relatively small,membraneous,black ascomata,with or without long necks,unitunicate,cylindrical asci with apical rings and fusiform,hyaline ascospores with or without mucilaginous sheaths are common in fre...Species with relatively small,membraneous,black ascomata,with or without long necks,unitunicate,cylindrical asci with apical rings and fusiform,hyaline ascospores with or without mucilaginous sheaths are common in freshwater habitats in tropical and temperate regions.Many of these taxa have originally been recorded as Annulatascaceae-like taxa.Twenty genera have been included in the family Annulatascaceae,mostly based on morphological characters,while molecular work and phylogenetic analyses are lacking for many genera.In this study,nine new Annulatascaceae-like taxa collected from Thailand were morphologically examined.Pure cultures obtained from single ascospores were used in molecular studies.The nine new strains and several other strains of Annulatascaceae-like Sordariomycetes species were used to establish phylogenetic and evolution relationships among the taxa,based on combined LSU,SSU,ITS and RPB2 sequence data.Phylogenetic analyses provide evidence to introduce one new order and six new families,to accommodate taxa excluded from Annulatascaceae sensu stricto.A new order Atractosporales is established based on the molecular study,including three new introduced families Conlariaceae,Pseudoproboscisporaceae and Atractosporaceae.Conlariaceae is introduced for the genus Conlarium which comprises two species,Conlarium duplumascosporun and a new Hyphomycetous asexual morph taxon Conlarium aquaticum which has subglobose or irregular,brown,clathrate,muriform conidia.Pseudoproboscisporaceae includes Pseudoproboscispora and Diluviicola,while Atractosporaceae includes the genera Rubellisphaeria and Atractospora.Barbatosphaeria,Xylomelasma and Ceratostomella form a distinct stable lineage which is introduced as a new family Barbatosphaeriaceae in Diaporthomycetidae families incertae sedis.A new family Lentomitellaceae is introduced in Diaporthomycetidae families incertae sedis,to accommodate the genus Lentomitella.Woswasiaceae is introduced to accommodate Woswasia,Xylochrysis and Cyanoannulus in Diaporthomycetidae families incertae sedis.Three new species of Fluminicola viz.F.saprophytica,F.thailandensis and F.aquatica are introduced.A new sexual morph,Dictyosporella thailandensis,is reported and Dictyosporella is excluded from Annulatascaceae and placed in Diaporthomycetidae genera incertae sedis.The first sexual morph of Sporidesmium,S.thailandense is also described.The new species Atractospora thailandensis,Diluviicola aquatica and Pseudoproboscispora thailandensis are also introduced.Platytrachelon is added to Papulosaceae based on phylogenetic analysis and morphological characters.Aquaticola,Fusoidispora and Pseudoannulatascus are excluded from Annulatascaceae and placed in Diaporthomycetidae genera incertae sedis.Mirannulata is accommodated in Sordariomycetes,genera incertae sedis.展开更多
基金supported by the National Natural Science Foundation of China(32302258,32172317)Changsha Municipal Natural Science Foundation(kq2202223).
文摘Diabetes-associated cognitive dysfunction has already been attracted considerable attention.Advanced glycation end products(AGEs)from daily diets are thought to be a vital contributor to the development of this diseases.However,the effect of one of the best-characterized exogenous AGEs N^(ε)-(carboxymethyl)lysine(CML)on cognitive function is not fully reported.In the present study,diabetical Goto-Kakizaki(GK)rats were treated with free CML for 8-weeks.It was found that oral consumption of exogenous CML significantly aggravated diabetes-associated cognitive dysfunction in behavioral test.In details,exogenous CML increased levels of oxidative stress,promoted the activation of glial cells in the brain,up-regulated the release of inflammatory cytokines interleukin-6,inhibited the protein expression of the brain-derived neurotrophic factor and thus led to neuroinflammation.Furthermore,exogenous CML promoted the amyloidogenesis in the brain of GK rats,and inhibited the expression of GLUT4.Additionally,several tricarboxylic acid cycle and glutamate-glutamine/γ-aminobutyric acid cycle intermediates including pyruvate,succinic acid,glutamine,glutamate were significantly changed in brain of GK rats treated with exogenous free CML.In conclusion,exogenous free CML is a potentially noxious compounds led to aggravated diabetes-associated cognitive dysfunction which could be possibly explained by its effects on neuroinflammation,energy and neurotransmitter amino acid homeostasis.
基金Supported by the National Natural Science Foundation of China(No.82060181)General Project funded by the Jiangxi Provincial Department of Education(No.GJJ2200194).
文摘AIM:To investigate the biomechanical properties and practical application of absorbable materials in orbital fracture repair.METHODS:The three-dimensional(3D)model of orbital blowout fractures was reconstructed using Mimics21.0 software.The repair guide plate model for inferior orbital wall fracture was designed using 3-matic13.0 and Geomagic wrap 21.0 software.The finite element model of orbital blowout fracture and absorbable repair plate was established using 3-matic13.0 and ANSYS Workbench 21.0 software.The mechanical response of absorbable plates,with thicknesses of 0.6 and 1.2 mm,was modeled after their placement in the orbit.Two patients with inferior orbital wall fractures volunteered to receive single-layer and double-layer absorbable plates combined with 3D printing technology to facilitate surgical treatment of orbital wall fractures.RESULTS:The finite element models of orbital blowout fracture and absorbable plate were successfully established.Finite element analysis(FEA)showed that when the Young’s modulus of the absorbable plate decreases to 3.15 MPa,the repair material with a thickness of 0.6 mm was influenced by the gravitational forces of the orbital contents,resulting in a maximum total deformation of approximately 3.3 mm.Conversely,when the absorbable plate was 1.2 mm thick,the overall maximum total deformation was around 0.4 mm.The half-year follow-up results of the clinical cases confirmed that the absorbable plate with a thickness of 1.2 mm had smaller maximum total deformation and better clinical efficacy.CONCLUSION:The biomechanical analysis observations in this study are largely consistent with the clinical situation.The use of double-layer absorbable plates in conjunction with 3D printing technology is recommended to support surgical treatment of infraorbital wall blowout fractures.
文摘The method of energy dispersion in magnetic field is used to analyze the energy spread of the triple-pulse electron beam generated by the Dragon-II linear induction accelerator.A sector magnet is applied for energy analysis of the electron beam,with a bending radius of 300 mm and a deflection angle of 90°.For each pulse,the time-resolved and integral images of the electron position at the output port of beam-bending line are recorded by a streak camera and a CCD camera,respectively.Experimental results demonstrate an energy spread of less than ±2.0%for the electron pulses.The cavity voltage waveforms obtained by different detectors are also analyzed for comparison.
基金The authors are grateful for financial support from National Natural Science Foundation of China(Nos.11575003,51607003)。
文摘Photo ionization plays a critical role in the formation and propagation of atmospheric pressure plasma jet plumes.But in experiments,it is very difficult to observe the photo ionization due to its relative lower density of photo electrons.In the present study,we develop a portable cold air plasma jet device and observe the ionization wave in adc spark air plasma jet.The discharge images acquired by an ICCD camera show that the ionization wave front performs as a quickly moving bright ball.Breakdown could take place at another side of the quartz plate or pork tissue layer(6 mm thick),which suggests that the ionization should be attributed to photo ionization.The laser schlieren images indicate there is propagation of a shock wave along with the plasma bullet.Based on the photo ionization theory and the photo-electric measurement,the direct photo ionization and multistage photo ionization are the main factors in charge of generating the cold air plasma jet.In addition,the plasma jet outside of the cathode nozzle is colder than 320 K and can be touched safely by a human.In view of the plasma jet including a large amount of active particles,such as NO,O,OH,emitted photons,etc,the proposed portable cold air plasma jet device could be qualified for plasma bio-medicine applications.
基金funded by the National Natural Science Foundation of China(62004165)the China Postdoctoral Science Foundation(2020M670036)+2 种基金the Natural Science Foundation of Shaanxi Province,China(2020JQ195)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(2020GXLH-Z-007,2020GXLH-Z-025)the Fundamental Research Funds for the Central Universities。
文摘The vast majority of high-performance perovskite solar cells(PSCs) are based on a formamidinium lead iodide(FAPbI_(3))-dominant composition. Nevertheless, the FA-based perovskite films suffer from undesirable phase transition and defects-induced non-ideal interfacial recombination, which significantly induces energy loss and hinders the improvement of device performance. Herein, we employed 4-fluorophenylmethylammonium iodide(F-PMAI) to modulate surface structure and energy level alignment of the FA-based perovskite films. The superior optoelectronic films were obtained with reduced trap density, pure α-phase FAPbI_(3) and favorable energy band bending. The lifetime of photogenerated charge carriers increased from 489.3 ns to 1010.6 ns, and a more “p-type” perovskite film was obtained by the post-treatment with F-PMAI. Following this strategy, we demonstrated an improved power conversion efficiency of 22.59% for the FA-based PSCs with an open-circuit voltage loss of 399 m V.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11575003 and 51607003)
文摘Different discharge morphologies in atmospheric Ar and He plasmas are excited by using a pulsed microwave hairpin resonator.Ar plasmas form an arched plasma plume at the opened end of the hairpin,whereas He plumes generate only a contracted plasmas in between both tips of metal electrodes.Despite this different point,their discharge processes have three similar characteristics:(i)the ionization occurs at the main electrode firstly and then develops to the slave electrode,(ii)during the shrinking stage the middle domain of the discharge channels disappears at last,and(iii)even at zero power input(in between pulses)a weak light region always exists in the discharge channels.Both experimental results and electromagnetic simulations suggest that the discharge is resonantly excited by the local enhanced electric fields.In addition,Ar ionization and excitation energies are lower than those of He,the effect of Ar gas flow is far greater than that of He gas,and the contribution of accelerated electrons only locates at the domain with the strongest electric fields.These reasons could be used to interpret the different characteristic plume morphologies of the proposed atmospheric Ar and He plasmas.
基金supported by grants from the National Natural Science Foundation of China(30921091)the National Key Program on Basic Research and Development(2010CB125901)+1 种基金the National Special Program for Research of Transgenic Plants of China(2011ZX08009‐001‐002)the Fundamental Research Funds for the Central Universities(2012YB03)
文摘A quantitative trait locus (QTL) that affects heading date (HD) and the number of spikelets per panicle (SPP) was previously identified in a small region on chromosome 7 in rice (Oryza sativa L.). In order to further characterize the QTL region, near isogenic lines (NILs) were quickly obtained by self-crossing recombinant inbred line 189, which is heterozygous in the vicinity of the target region. The pleiotropic effects of QTL Ghd7.1 on plant height (PH), SPP, and HD, were validated using an NIL-F2 population. Ghd7.1 explained 50.2%, 45.3%, and 76.9% of phenotypic variation in PH, SPP, and HD, respectively. Ghd7.1 was precisely mapped to a 357-kb region on the basis of analysis of the progeny of the NIL-F2 population. Day-length treatment confirmed that Ghd7.1 is sensitive to photoperiod, with long days delaying heading up to 12.5 d. Identification of panicle initiation and development for the pair of NILs showed that Ghd7.1 elongated the photoperiod-sensitive phase more than 10 d, but did not change the basic vegetative phase and the reproductive growth phase. These findings indicated that Ghd7.1 regulates SPP by controlling the rate of panicle differentiation rather than the duration of panicle development.
基金CAS President’s International Fellowship Initiative(PIFI)for Young Staff 2019-2021(grant number 2019FY0003)the Research Fund from China Postdoctoral Science Foundation(Grant No.Y71B283261)+45 种基金the Yunnan Provincial Department of Human Resources and Social Security(Grant No.Y836181261)National Science Foundation of China(NSFC)project code 31850410489 for financial research supportthe Foreign Experts Bureau of Yunnan Province,Foreign Talents Program(2018,Grant No.YNZ2018002)Thailand Research grants entitled Biodiversity,phylogeny and role of fungal endophytes on above parts of Rhizophora apiculata and Nypa fruticans(Grant No:RSA5980068)the future of specialist fungi in a changing climate:baseline data for generalist and specialist fungi associated with ants,Rhododendron species and Dracaena species(Grant No:DBG6080013)Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion(Grant No:RDG6130001)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant No.QYZDY-SSW-SMC014)the National Science Foundation of China and the Chinese Academy of Sciences for financial support under the following grants:41761144055,41771063 and Y4ZK111B01the Fonds de la Recherche Scientifique-FNRS(Belgium)for travel grantsCAS President’s International Fellowship Initiative(PIFI)for funding his postdoctoral research(Grant No.2018PC0006)the National Science Foundation of China(NSFC,project code 31750110478)CAS President’s International Fellowship Initiative(PIFI)for funding his postdoctoral research(Grant No.2019PC0008)supported under the Distinguished Scientist Fellowship Program(DSFP),King Saud University,Kingdom of Saudi Arabia.the Kerala State Council for Science,Technology and Environment(KSCSTE)in the form of a PhD fellowship(Grant No.001/FSHP/2011/CSTE)the Principal Chief Conservator of forests,Kerala State,for granting permission(No.WL10-4937/2012,dated 03-10-2013)to collect agarics from the forests of Keralathe Council of Scientific&Industrial Research(CSIR),New Delhi,India,in the form of an award of CSIR Research Associateship(09/043(0178)2K17 dated:31/03/2017)the National Natural Science Foundation of China(Project ID:31470152 and 31360014)the Foundation of Innovative Group of Edible Mushrooms Industry of Beijing(Project ID:BAIC05-2017)the 5th batch of Postdoctoral Orientation Training Personnel in Yunnan Province and the 64th batch of China Postdoctoral Science FoundationCNPq for the Ph.D scholarship of RLMA(140283/2016-1)Pos-Graduacao em Biologia de Fungos(UFPE,Brazil)Capes(Capes-SIU 008/13)CNPq(PQ 307601/2015-3)FACEPE(APQ 0375-2.03/15)for funding the researchfinancial support from the Agreement ENDESA and San Ignacio de Huinay Foundations and Consejo Superior de Investigaciones Cientificas,CSIC(Projects No.2011HUIN10,2013CL0012,2014CL0011)the AECID(Agencia Espanola de Cooperacion Internacional para el Desarrollo)and Plan Nacional I+D+i project no.CGL2015-67459-Psupported by a Predoctoral Grant from the Ministerio de Economıa y Competitividad(Spain)(BES-2016-077793)Croatian Science Foundation for their partial support under the project HRZZ-IP-2018-01-1736(ForFungiDNA)supported by the Graduate Program for the Undiscovered Taxa of Koreathe Project on Survey and Discovery of Indigenous Fungal Species of Korea funded by NIBR and Project on Discovery of Fungi from Freshwater and Collection of Fungarium funded by NNIBR of the Ministry of Environment(MOE)in part carried out with the support of Cooperative Research Program for Agriculture Science and Technology Development(PJ013744)Rural Development Administration,and BK21 PLUS program funded by Ministry of Education,Republic of Koreathe CASTWAS for the PhD Fellowship.Sanjay K.Singh,Paras Nath Singh,Shiwali Rana and Frank Kwekucher Ackah thank Director,MACS,Agharkar Research Institute,Pune,India for providing facilities.Shiwali Rana and Frank Kwekucher Ackah thank UGC(Junior Research Fellowship)and DST,Govt.of India(CV Raman Fellowship for African Researchers),respectively.Gen-Nuo Wang,Huang Zhang,Wei Dong and Xian-Dong Yu thank the National Natural Science Foundation of China(Project ID:NSF 31500017).Bandarupalli Devadatha and V.Venkateswara Sarma thank The Ministry of Earth sciences,Govt.of India(Sanction order:MOES/36/OO1S/Extra/40/2014/PC-IV dt.14.1.2015)for a funding of the project,T,District Forest Office,Tiruvarur,Tamil Nadu and PCCF(Head of Forest Force),Chennai,Tamil Nadu Forest Department for providing permission to collect samples from Muthupet mangroves,and Department of Biotechnology,Pondicherry University is thanked for providing the facilities.Myung Soo Park,Seung-Yoon Oh and Young Woon Lim thank the Marine Bio Resource Bank Program of the Ministry of Ocean&Fisheries,Korea.Olinto Pereira thanks the CAPES,CNPq and FAPEMIG for financial support.Neven Matocˇec,Ivana Kusˇan and Margita Jadan express their gratitude to Livio Lorenzon,Enrico Bizio and Raffaella Trabucco(MCVE)for their kind help with loan of Sarcopeziza sicula type materialparts of their research were financed by Public Institutions Sjeverni Velebit National Park and Paklenica National Parkthe National Natural Science Foundation of China(No.NSFC 31760013,NSFC 31260087,NSFC 31460561)the Scientific Research Foundation of Yunnan Provincial Department of Education(2017ZZX186)utilization of endophytes and the Thousand Talents Plan,Youth Project of Yunnan Provincesthe National Natural Science Foundation of China(No.31760014)and the Science and Technology Foundation of Guizhou Province(No.[2017]5788)Thailand Research Fund(TRF)Grant No MRG6080089 for financial research supportThe Royal Golden Jubilee Ph.D.Program(PHD60K0147)under Thailand Research Fund,for financial research supports on project entitle"Fungi on limestone outcrops from southern Thailand to lower himalyas"the National Research Council of Thailand(Grant No.61215320023,61215320013)the Thailand Research Fund(Grant No.TRG6180001)for research financial supportthe Thailand Research Fund(RTA 5880006)Chiang Mai University for partially support this research workChina-Thailand Joint Lab on Microbial Biotechnology(Most KY201701011)for financial supportthe Mushroom Research Foundation for research financial support and PhD Fellowships.
文摘This article is the ninth in the series of Fungal Diversity Notes,where 107 taxa distributed in three phyla,nine classes,31 orders and 57 families are described and illustrated.Taxa described in the present study include 12 new genera,74 new species,three new combinations,two reference specimens,a re-circumscription of the epitype,and 15 records of sexualasexual morph connections,new hosts and new geographical distributions.Twelve new genera comprise Brunneofusispora,Brunneomurispora,Liua,Lonicericola,Neoeutypella,Paratrimmatostroma,Parazalerion,Proliferophorum,Pseudoastrosphaeriellopsis,Septomelanconiella,Velebitea and Vicosamyces.Seventy-four new species are Agaricus memnonius,A.langensis,Aleurodiscus patagonicus,Amanita flavoalba,A.subtropicana,Amphisphaeria mangrovei,Baorangia major,Bartalinia kunmingensis,Brunneofusispora sinensis,Brunneomurispora lonicerae,Capronia camelliaeyunnanensis,Clavulina thindii,Coniochaeta simbalensis,Conlarium thailandense,Coprinus trigonosporus,Liua muriformis,Cyphellophora filicis,Cytospora ulmicola,Dacrymyces invisibilis,Dictyocheirospora metroxylonis,Distoseptispora thysanolaenae,Emericellopsis koreana,Galiicola baoshanensis,Hygrocybe lucida,Hypoxylon teeravasati,Hyweljonesia indica,Keissleriella caraganae,Lactarius olivaceopallidus,Lactifluus midnapurensis,Lembosia brigadeirensis,Leptosphaeria urticae,Lonicericola hyaloseptispora,Lophiotrema mucilaginosis,Marasmiellus bicoloripes,Marasmius indojasminodorus,Micropeltis phetchaburiensis,Mucor orantomantidis,Murilentithecium lonicerae,Neobambusicola brunnea,Neoeutypella baoshanensis,Neoroussoella heveae,Neosetophoma lonicerae,Ophiobolus malleolus,Parabambusicola thysanolaenae,Paratrimmatostroma kunmingensis,Parazalerion indica,Penicillium dokdoense,Peroneutypa mangrovei,Phaeosphaeria cycadis,Phanerochaete australosanguinea,Plectosphaerella kunmingensis,Plenodomus artemisiae,P.lijiangensis,Proliferophorum thailandicum,Pseudoastrosphaeriellopsis kaveriana,Pseudohelicomyces menglunicus,Pseudoplagiostoma mangiferae,Robillarda mangiferae,Roussoella elaeicola,Russula choptae,R.uttarakhandia,Septomelanconiella thailandica,Spencermartinsia acericola,Sphaerellopsis isthmospora,Thozetella lithocarpi,Trechispora echinospora,Tremellochaete atlantica,Trichoderma koreanum,T.pinicola,T.rugulosum,Velebitea chrysotexta,Vicosamyces venturisporus,Wojnowiciella kunmingensis and Zopfiella indica.Three new combinations are Baorangia rufomaculata,Lanmaoa pallidorosea and Wojnowiciella rosicola.The reference specimens of Canalisporium kenyense and Tamsiniella labiosa are designated.The epitype of Sarcopeziza sicula is re-circumscribed based on cyto-and histochemical analyses.The sexual-asexual morph connection of Plenodomus sinensis is reported from ferns and Cirsium for the first time.In addition,the new host records and country records are Amanita altipes,A.melleialba,Amarenomyces dactylidis,Chaetosphaeria panamensis,Coniella vitis,Coprinopsis kubickae,Dothiorella sarmentorum,Leptobacillium leptobactrum var.calidus,Muyocopron lithocarpi,Neoroussoella solani,Periconia cortaderiae,Phragmocamarosporium hederae,Sphaerellopsis paraphysata and Sphaeropsis eucalypticola.
基金K.D.Hyde would like to thank the Thailand Research Fund grant no RSA5980068 entitled Biodiversity,phylogeny and role of fungal endophytes on above parts of Rhizophora apiculata and Nypa fruticans and the Chinese Academy of Sciences,Project Number 2013T2S0030,for the award of Visiting Professorship for Senior International Scientists at Kunming Institute of Botany.Financial support by the German Academic Exchange Service(DAAD)and the Thai Royal Golden Ph.D.Jubilee-Industry program(RGJ)for a joint TRF-DAAD PPP(2012-2014)academic exchange grant to K.D.Hyde and M.Stadler,and the RGJ for a personal grant to B.Thongbai(No.Ph.D/0138/2553 in 4.S.MF/53/A.3)is gratefully acknowledged.Chayanard Phukhamsakda(PHD/0020/2557)acknowledges the The Royal Golden Jubilee Ph.D.Program under the Thailand Research Fund.Mingkwan Doilom acknowledges the Royal Golden Jubilee Ph.D.Program(PHD./0072/2553 in 4.S.M.F./53/A.2)under the Thailand Research Fund.Ausana Mapook is grateful to Research and Researchers for Industries(RRI)PHD57I0012.Rungtiwa Phookamsak sincerely appreciates The Royal Golden Jubilee Ph.D.Program(PHD/0090/2551 in 4.S.MF/51/A.1)under the Thailand Research Fund for financial support.Qi Zhao thanks the National Natural Science Foundation of China(No.31360015)the CAS/SAFEA International Partnership Program for Creative Research Teams,and the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KSCX2-EW-Z-9 and KIB2016002)+11 种基金KNAR acknowledges support from the University Grants Commission(UGC),India,in the form of a Rajiv Gandhi National Fellowship(Grant No.F.14-2(SC)/2009(SA-III)(and the permissions given to him for collecting agaric specimens from the forests of Kerala by the Principal Chief Conservator of Forests,Government of Kerala(WL12-4042/2009 dated 05-08-2009)This Project was funded by the National Plan for Science,Technology and Innovation(MAARIFAH),King Abdulaziz City for Science and Technology,Kingdom of Saudi Arabia,Award Number(12-BIO2840-02)B.K.Cui thanked for the finance by the Fundamental Research Funds for the Central Universities(No.2016ZCQ04)and the National Natural Science Foundation of China(Project No.31422001)We would like to thank Dr.Marcela E.S.Cáceres for translating the German description of Clavulinopsis,the Conselho Nacional de Desenvolvimento Cientí-fico(CNPq)for the master scholarship of LSAN,the PósGraduac¸ǎo em Biologia de Fungos(UFPE,Brazil),CNPq(Protax 562106/2010-3,Sisbiota 563342/2010-2,Universal 472792/2011-3)FACEPE(APQ-0788-2.03/12)for financing this research.H.B.Lee was supported by the Graduate Program for the Undiscovered Taxa of Korea,and by the Project on Survey and Discovery of Indigenous Fungal Species of Korea,funded by NIBR and NNIBR of the Ministry of Environment(MOE),and in part by a fund from National Institute of Animal Science under Rural Development Administration,Republic of Korea.Aniket Ghosh,Priyanka Uniyal and R.P.Bhatt are grateful to the Head,Department of Botany&Microbiology,HNB Garhwal University,Srinagar Garhwal for providing all kinds of facilities during the present study.Kanad Das and Abhishek Baghela are thankful to the Director,Botanical Survey of India,Kolkata and Director,MACS’Agharkar Research Institute,Pune respectively for providing facilities.UGC provided fellowship to Aniket Ghosh and Priyanka Unial.Field assistance rendered by Mr.Tahir Mehmood and Mr.Upendra Singh(HNBGU)are also duly acknowledged.Tuula Niskanen,Kare Liimatainen,Ilkka Kytövuori,Joe Ammirati,Ba´lint Dima,and Dimitar Bojantchev would like to acknowledge Heino Vänskäfor the help with nomenclature.We are grateful to the curators of H and S.This work was partially supported by the Ministry of Environment,Finland(YM38/5512/2009)and OskarÖflunds Stiftelse.The authors thanks Dr.Kerstin Voigt for the inestimable help in critical reviewing the lower fungi entries,the Coordenac¸ǎo de Aperfeic¸oamento de Pessoal de Nı´vel Superior(CAPES)and Fundac¸ǎo de AmparoàCiência e Tecnologia do Estado de Pernambuco(FACEPE)for the postgraduate scholarships to Diogo X.Lima and Carlos A.F.de Souza,respectively.We also thank Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)and FACEPE for financial support through the projects:‘Mucoromycotina in upland forests from the semi-arid of Pernambuco’(CNPq-458391/2014-0),and‘Diversity of Mucoromycotina in different ecosystems of the Pernambuco’s Atlantic Rainforest’(FACEPE-APQ 0842-2.12/14).Z.L Luo and H.Y Su would like to thank the National Natural Science Foundation of China(Project ID:31460015)for financial support on Study of the distribution pattern and driving factors of aquatic fungal diversity in the region of Three Parallel Rivers.C.Phukhamsakda would like to thank Dr.Matthew P.Nelsen for his valuable suggestions.Saranyaphat Boonmee thanks to the Thailand Research Fund,project number TRG5880152 and Mae Fah Luang University for a Grant Number 2559A30702006C.G.Lin and Y.Wang thank for the finance by the National Natural Science Foundation of China(No.NSFC 31560489)Fundamental Research on Science and Technology,Ministry of Science and Technology of China(2014FY120100)Haixia Wu would like to thank Dr.Shaun Pennycook for his kindly nomenclatural review and thanked for the finance by the National Natural Science Foundation of China(Project No.31300019)S.C.Karunarathna,P.E.Mortimer and J.C.Xu would like to thank the World Agroforestry Centre,East and Central Asia OfficeKey Laboratory for Plant Diversity and Biogeography of East Asia,Kunming Institute of Botany,Chinese Academy of Sciencethe ChineseMinistry of Science and Technology,under the 12th 5-year National Key Technology Support Program(NKTSP)2013 BAB07B06 integration and comprehensive demonstration of key technologies on Green Phosphate-mountaion Construction and the CGIAR Research Program 6:Forest,Trees and Agroforestry for partial funding.The National Research Council of Thailand(NRCT),projects-Taxonomy,phylogeny and cultivation of Lentinus species in northern Thailand(NRCT/55201020007)is also thanked.K.Tanaka and A.Hashimoto would like to thank the Japan Society for the Promotion of Science(JSPS,26291084,16K07474,16J07243).
文摘This is a continuity of a series of taxonomic papers where materials are examined,described and novel combinations are proposed where necessary to improve our traditional species concepts and provide updates on their classification.In addition to extensive morphological descriptions and appropriate asexual and sexual connections,DNA sequence data are also analysed from concatenated datasets(rDNA,TEF-a,RBP2 and b-Tubulin)to infer phylogenetic relationships and substantiate systematic position of taxa within appropriate ranks.Wherever new species or combinations are being proposed,we apply an integrative approach(morphological and molecular data as well as ecological features wherever applicable).Notes on 125 fungal taxa are compiled in this paper,including eight new genera,101 new species,two new combinations,one neotype,four reference specimens,new host or distribution records for eight species and one alternative morphs.The new genera introduced in this paper are Alloarthopyrenia,Arundellina,Camarosporioides,Neomassaria,Neomassarina,Neotruncatella,Paracapsulospora and Pseudophaeosphaeria.The new species are Alfaria spartii,Alloarthopyrenia italica,Anthostomella ravenna,An.thailandica,Arthrinium paraphaeospermum,Arundellina typhae,Aspergillus koreanus,Asterina cynometrae,Bertiella ellipsoidea,Blastophorum aquaticum,Cainia globosa,Camarosporioides phragmitis,Ceramothyrium menglunense,Chaetosphaeronema achilleae,Chlamydotubeufia helicospora,Ciliochorella phanericola,Clavulinopsis aurantiaca,Colletotrichum insertae,Comoclathris italica,Coronophora myricoides,Cortinarius fulvescentoideus,Co.nymphatus,Co.pseudobulliardioides,Co.tenuifulvescens,Cunninghamella gigacellularis,Cyathus pyristriatus,Cytospora cotini,Dematiopleospora alliariae,De.cirsii,Diaporthe aseana,Di.garethjonesii,Distoseptispora multiseptata,Dis.tectonae,Dis.tectonigena,Dothiora buxi,Emericellopsis persica,Gloniopsis calami,Helicoma guttulatum,Helvella floriforma,H.oblongispora,Hermatomyces subiculosa,Juncaceicola italica,Lactarius dirkii,Lentithecium unicellulare,Le.voraginesporum,Leptosphaeria cirsii,Leptosphaeria irregularis,Leptospora galii,Le.thailandica,Lindgomyces pseudomadisonensis,Lophiotrema bambusae,Lo.fallopiae,Meliola citri-maximae,Minimelanolocus submersus,Montagnula cirsii,Mortierella fluviae,Muriphaeosphaeria ambrosiae,Neodidymelliopsis ranunculi,Neomassaria fabacearum,Neomassarina thailandica,Neomicrosphaeropsis cytisi,Neo.cytisinus,Neo.minima,Neopestalotiopsis cocoe¨s,Neopestalotiopsis musae,Neoroussoella lenispora,Neotorula submersa,Neotruncatella endophytica,Nodulosphaeria italica,Occultibambusa aquatica,Oc.chiangraiensis,Ophiocordyceps hemisphaerica,Op.lacrimoidis,Paracapsulospora metroxyli,Pestalotiopsis sequoiae,Peziza fruticosa,Pleurotrema thailandica,Poaceicola arundinis,Polyporus mangshanensis,Pseudocoleophoma typhicola,Pseudodictyosporium thailandica,Pseudophaeosphaeria rubi,Purpureocillium sodanum,Ramariopsis atlantica,Rhodocybe griseoaurantia,Rh.indica,Rh.luteobrunnea,Russula indoalba,Ru.pseudoamoenicolor,Sporidesmium aquaticivaginatum,Sp.olivaceoconidium,Sp.pyriformatum,Stagonospora forlicesenensis,Stagonosporopsis centaureae,Terriera thailandica,Tremateia arundicola,Tr.guiyangensis,Trichomerium bambusae,Tubeufia hyalospora,Tu.roseohelicospora and Wojnowicia italica.New combinations are given for Hermatomyces mirum and Pallidocercospora thailandica.A neotype is proposed for Cortinarius fulvescens.Reference specimens are given for Aquaphila albicans,Leptospora rubella,Platychora ulmi and Meliola pseudosasae,while new host or distribution records are provided for Diaporthe eres,Di.siamensis,Di.foeniculina,Dothiorella iranica,Do.sarmentorum,Do.vidmadera,Helvella tinta and Vaginatispora fuckelii,with full taxonomic details.An asexual state is also reported for the first time in Neoacanthostigma septoconstrictum.This paper contributes to a more comprehensive update and improved identification of many ascomycetes and basiodiomycetes.
文摘This paper is a compilation of notes on 142 fungal taxa,including five new families,20 new genera,and 100 new species,representing a wide taxonomic and geographic range.The new families,Ascocylindricaceae,Caryosporaceae and Wicklowiaceae(Ascomycota)are introduced based on their distinct lineages and unique morphology.The new Dothideomycete genera Pseudomassariosphaeria(Amniculicolaceae),Heracleicola,Neodidymella and Pseudomicrosphaeriopsis(Didymellaceae),Pseudopithomyces(Didymosphaeriaceae),Brunneoclavispora,Neolophiostoma and Sulcosporium(Halotthiaceae),Lophiohelichrysum(Lophiostomataceae),Galliicola,Populocrescentia and Vagicola(Phaeosphaeriaceae),Ascocylindrica(Ascocylindricaceae),Elongatopedicellata(Roussoellaceae),Pseudoasteromassaria(Latoruaceae)and Pseudomonodictys(Macrodiplodiopsidaceae)are introduced.The newly described species of Dothideomycetes(Ascomycota)are Pseudomassariosphaeria bromicola(Amniculicolaceae),Flammeascoma lignicola(Anteagloniaceae),Ascocylindrica marina(Ascocylindricaceae),Lembosia xyliae(Asterinaceae),Diplodia crataegicola and Diplodia galiicola(Botryosphaeriaceae),Caryospora aquatica(Caryosporaceae),Heracleicola premilcurensis and Neodidymella thailandicum(Didymellaceae),Pseudopithomyces palmicola(Didymosphaeriaceae),Floricola viticola(Floricolaceae),Brunneoclavispora bambusae,Neolophiostoma pigmentatum and Sulcosporium thailandica(Halotthiaceae),Pseudoasteromassaria fagi(Latoruaceae),Keissleriella dactylidicola(Lentitheciaceae),Lophiohelichrysum helichrysi(Lophiostomataceae),Aquasubmersa japonica(Lophiotremataceae),Pseudomonodictys tectonae(Macrodiplodiopsidaceae),Microthyrium buxicola and Tumidispora shoreae(Microthyriaceae),Alloleptosphaeria clematidis,Allophaeosphaeria cytisi,Allophaeosphaeria subcylindrospora,Dematiopleospora luzulae,Entodesmium artemisiae,Galiicola pseudophaeosphaeria,Loratospora luzulae,Nodulosphaeria senecionis,Ophiosphaerella aquaticus,Populocrescentia forlicesenensis and Vagicola vagans(Phaeosphaeriaceae),Elongatopedicellata lignicola,Roussoella magnatum and Roussoella angustior(Roussoellaceae)and Shrungabeeja longiappendiculata(Tetraploasphaeriaceae).The new combinations Pseudomassariosphaeria grandispora,Austropleospora archidendri,Pseudopithomyces chartarum,Pseudopithomyces maydicus,Pseudopithomyces sacchari,Vagicola vagans,Punctulariopsis cremeoalbida and Punctulariopsis efibulata Dothideomycetes.The new genera Dictyosporella(Annulatascaceae),and Tinhaudeus(Halosphaeriaceae)are introduced in Sordariomycetes(Ascomycota)while Dictyosporella aquatica(Annulatascaceae),Chaetosphaeria rivularia(Chaetosphaeriaceae),Beauveria gryllotalpidicola and Beauveria loeiensis(Cordycipitaceae),Seimatosporium sorbi and Seimatosporium pseudorosarum(Discosiaceae),Colletotrichum aciculare,Colletotrichum fusiforme and Colletotrichum hymenocallidicola(Glomerellaceae),Tinhaudeus formosanus(Halosphaeriaceae),Pestalotiopsis subshorea and Pestalotiopsis dracaenea(Pestalotiopsiceae),Phaeoacremonium tectonae(Togniniaceae),Cytospora parasitica and Cytospora tanaitica(Valsaceae),Annulohypoxylon palmicola,Biscogniauxia effusae and Nemania fusoideis(Xylariaceae)are introduced as novel species to order Sordariomycetes.The newly described species of Eurotiomycetes are Mycocalicium hyaloparvicellulum(Mycocaliciaceae).Acarospora septentrionalis and Acarospora castaneocarpa(Acarosporaceae),Chapsa multicarpa and Fissurina carassensis(Graphidaceae),Sticta fuscotomentosa and Sticta subfilicinella(Lobariaceae)are newly introduced in class Lecanoromycetes.In class Pezizomycetes,Helvella pseudolacunosa and Helvella rugosa(Helvellaceae)are introduced as new species.The new families,Dendrominiaceae and Neoantrodiellaceae(Basidiomycota)are introduced together with a new genus Neoantrodiella(Neoantrodiellaceae),here based on both morphology coupled with molecular data.In the class Agaricomycetes,Agaricus pseudolangei,Agaricus haematinus,Agaricus atrodiscus and Agaricus exilissimus(Agaricaceae),Amanita melleialba,Amanita pseudosychnopyramis and Amanita subparvipantherina(Amanitaceae),Entoloma calabrum,Cora barbulata,Dictyonema gomezianum and Inocybe granulosa(Inocybaceae),Xerocomellus sarnarii(Boletaceae),Cantharellus eucalyptorum,Cantharellus nigrescens,Cantharellus tricolor and Cantharellus variabilicolor(Cantharellaceae),Cortinarius alboamarescens,Cortinarius brunneoalbus,Cortinarius ochroamarus,Cortinarius putorius and Cortinarius seidlii(Cortinariaceae),Hymenochaete micropora and Hymenochaete subporioides(Hymenochaetaceae),Xylodon ramicida(Schizoporaceae),Colospora andalasii(Polyporaceae),Russula guangxiensis and Russula hakkae(Russulaceae),Tremella dirinariae,Tremella graphidis and Tremella pyrenulae(Tremellaceae)are introduced.Four new combinations Neoantrodiella gypsea,Neoantrodiella thujae(Neoantrodiellaceae),Punctulariopsis cremeoalbida,Punctulariopsis efibulata(Punctulariaceae)are also introduced here for the division Basidiomycota.Furthermore Absidia caatinguensis,Absidia koreana and Gongronella koreana(Cunninghamellaceae),Mortierella pisiformis and Mortierella formosana(Mortierellaceae)are newly introduced in the Zygomycota,while Neocallimastix cameroonii and Piromyces irregularis(Neocallimastigaceae)are introduced in the Neocallimastigomycota.Reference specimens or changes in classification and notes are provided for Alternaria ethzedia,Cucurbitaria ephedricola,Austropleospora,Austropleospora archidendri,Byssosphaeria rhodomphala,Lophiostoma caulium,Pseudopithomyces maydicus,Massariosphaeria,Neomassariosphaeria and Pestalotiopsis montellica.
基金supported by National Natural Science Foundation of China(Project ID:NSF 31500017 to Huang Zhang)Scientific Foundation of Kunming University of Science and Technology(Project ID:14118899 to Huang Zhang)Thanks are extended to Saranyaphat Boonmee for their assistance in microscope use.
文摘Species with relatively small,membraneous,black ascomata,with or without long necks,unitunicate,cylindrical asci with apical rings and fusiform,hyaline ascospores with or without mucilaginous sheaths are common in freshwater habitats in tropical and temperate regions.Many of these taxa have originally been recorded as Annulatascaceae-like taxa.Twenty genera have been included in the family Annulatascaceae,mostly based on morphological characters,while molecular work and phylogenetic analyses are lacking for many genera.In this study,nine new Annulatascaceae-like taxa collected from Thailand were morphologically examined.Pure cultures obtained from single ascospores were used in molecular studies.The nine new strains and several other strains of Annulatascaceae-like Sordariomycetes species were used to establish phylogenetic and evolution relationships among the taxa,based on combined LSU,SSU,ITS and RPB2 sequence data.Phylogenetic analyses provide evidence to introduce one new order and six new families,to accommodate taxa excluded from Annulatascaceae sensu stricto.A new order Atractosporales is established based on the molecular study,including three new introduced families Conlariaceae,Pseudoproboscisporaceae and Atractosporaceae.Conlariaceae is introduced for the genus Conlarium which comprises two species,Conlarium duplumascosporun and a new Hyphomycetous asexual morph taxon Conlarium aquaticum which has subglobose or irregular,brown,clathrate,muriform conidia.Pseudoproboscisporaceae includes Pseudoproboscispora and Diluviicola,while Atractosporaceae includes the genera Rubellisphaeria and Atractospora.Barbatosphaeria,Xylomelasma and Ceratostomella form a distinct stable lineage which is introduced as a new family Barbatosphaeriaceae in Diaporthomycetidae families incertae sedis.A new family Lentomitellaceae is introduced in Diaporthomycetidae families incertae sedis,to accommodate the genus Lentomitella.Woswasiaceae is introduced to accommodate Woswasia,Xylochrysis and Cyanoannulus in Diaporthomycetidae families incertae sedis.Three new species of Fluminicola viz.F.saprophytica,F.thailandensis and F.aquatica are introduced.A new sexual morph,Dictyosporella thailandensis,is reported and Dictyosporella is excluded from Annulatascaceae and placed in Diaporthomycetidae genera incertae sedis.The first sexual morph of Sporidesmium,S.thailandense is also described.The new species Atractospora thailandensis,Diluviicola aquatica and Pseudoproboscispora thailandensis are also introduced.Platytrachelon is added to Papulosaceae based on phylogenetic analysis and morphological characters.Aquaticola,Fusoidispora and Pseudoannulatascus are excluded from Annulatascaceae and placed in Diaporthomycetidae genera incertae sedis.Mirannulata is accommodated in Sordariomycetes,genera incertae sedis.