The relations of bulk modulus, shear modulus, Young's modulus and the Poisson's ratio with porosity of foam plastics are determined by a three phase spheroidal model commonly used in Composite Mechanics. The r...The relations of bulk modulus, shear modulus, Young's modulus and the Poisson's ratio with porosity of foam plastics are determined by a three phase spheroidal model commonly used in Composite Mechanics. The results are compared with those using differential scheme. It is shown that the material properties derived from the present model normally are larger than those obtained by differential scheme for foam plastics with identical porosity. The differences in shear moduli and Young's moduli obtained by the two methods are small but they are larger for bulk moduli of incompressible matrix and Poisson's ratios. The Young's moduli of high density foam plastics derived by the present model agree better with experimental ones.展开更多
基金Supported by the National Natural Science Foundation of China and Laboratory for Nonlinear Mechanics of Continuous Media,Institute of Mechanics,Chinese Academy of Sciences.
文摘The relations of bulk modulus, shear modulus, Young's modulus and the Poisson's ratio with porosity of foam plastics are determined by a three phase spheroidal model commonly used in Composite Mechanics. The results are compared with those using differential scheme. It is shown that the material properties derived from the present model normally are larger than those obtained by differential scheme for foam plastics with identical porosity. The differences in shear moduli and Young's moduli obtained by the two methods are small but they are larger for bulk moduli of incompressible matrix and Poisson's ratios. The Young's moduli of high density foam plastics derived by the present model agree better with experimental ones.