A derivation of an analytical expression for the inviscid velocity fieldinduced by a single right-handed helical vortex filament is presented. The vortex filament movesuniformly and rigidly without change of form in a...A derivation of an analytical expression for the inviscid velocity fieldinduced by a single right-handed helical vortex filament is presented. The vortex filament movesuniformly and rigidly without change of form in a cylindrical tube, where the vortex filamentrotates around its axis with a constant angular velocity and translates along its axis with aconstant translational velocity. The key to solve the problem is to set up a moving cylindricalcoordinate system fixed on the vortex filament. The result shows that the velocity field is atime-periodic function, and may degenerate into Okulovs' s formula when the helical vortex filamentslips along the filament itself or stays immobile.展开更多
文摘A derivation of an analytical expression for the inviscid velocity fieldinduced by a single right-handed helical vortex filament is presented. The vortex filament movesuniformly and rigidly without change of form in a cylindrical tube, where the vortex filamentrotates around its axis with a constant angular velocity and translates along its axis with aconstant translational velocity. The key to solve the problem is to set up a moving cylindricalcoordinate system fixed on the vortex filament. The result shows that the velocity field is atime-periodic function, and may degenerate into Okulovs' s formula when the helical vortex filamentslips along the filament itself or stays immobile.