期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Layer-dependent signatures for exciton dynamics in monolayer and multilayer WSe2 revealed by fluorescence lifetime imaging measurement
1
作者 Yuanshuang liu huanglong li +2 位作者 Cuicui Qiu Xiangmin Hu Dameng liu 《Nano Research》 SCIE EI CAS CSCD 2020年第3期661-666,共6页
Two-dimensional(2D)transition-metal dichalcogenide(TMD)materials have aroused noticeable interest due to their distinguished electronic and optical properties.However,little is known about their complex exciton proper... Two-dimensional(2D)transition-metal dichalcogenide(TMD)materials have aroused noticeable interest due to their distinguished electronic and optical properties.However,little is known about their complex exciton properties together with the exciton dynamics process which have been expected to influence the performance of optoelectronic devices.The process of fluorescence can well reveal the process of exciton transition after excitation.In this work,the room-temperature layer-dependent exciton dynamics properties in layered WSe2 are investigated by the fluorescence lifetime imaging microscopy(FLIM)for the first time.This paper focuses on two mainly kinds of excitons including the direct transition neutral excitons and trions.Compared with the lifetime of neutral excitons(<0.3 ns within four-layer),trions possess a longer lifetime(~6.6 ns within four-layer)which increases with the number of layers.We attribute the longer-lived lifetime to the increasing number of trions as well as the varieties of trion configurations in thicker WSe2.Besides,the whole average lifetime increases over 10%when WSe2 flakes added up from monolayer to four-layer.This paper provides a novel tuneable layer-dependent method to control the exciton dynamics process and finds a relatively longer transition lifetime of trions at room temperature,enabling to investigate in the charge transport in TMD-based optoelectronics devices in the future. 展开更多
关键词 two-dimensional(2D)WSe2 exciton dynamics fluorescence lifetime fluorescence lifetime imaging microscopy(FLIM) density functional theory(DFT)
原文传递
Direct laser patterning of two-dimensional lateral transition metal disulfide-oxide-disulfide heterostructures for ultrasensitive sensors 被引量:1
2
作者 Bolun Wang Hao Luo +11 位作者 Xuewen Wang Enze Wang Yufei Sun Yu-Chien Tsai Jinxuan Dong Peng liu huanglong li Yong Xu Sefaattin Tongay Kaili Jiang Shoushan Fan Kai liu 《Nano Research》 SCIE EI CAS CSCD 2020年第8期2035-2043,共9页
Two-dimensional(2D)heterostructures based on the combination of transition metal dichalcogenides(TMDs)and transition metal oxides(TMOs)have aroused growing attention due to their integrated merits of both components a... Two-dimensional(2D)heterostructures based on the combination of transition metal dichalcogenides(TMDs)and transition metal oxides(TMOs)have aroused growing attention due to their integrated merits of both components and multiple functionalities.However,nondestructive approaches of constructing TMD-TMO heterostructures are still very limited.Here,we develop a novel type of lateral TMD-TMO heterostructure(NbS2-Nb2O5-NbS2)using a simple lithography-free,direct laser-patterning technique.The perfect contact of an ultrathin TMO channel(Nb2O5)with two metallic TMDs(NbS2)electrodes guarantee strong electrical signals in a two-terminal sensor.Distinct from sensing mechanisms in separate TMOs or TMDs,this sensor works based on the modulation of surface conduction of the ultrathin TMO(Nb2O5)channel through an adsorbed layer of water molecules.The sensor thus exhibits high selectivity and ultrahigh sensitivity for room-temperature detection of NH3(ΔR/R=80%at 50 ppm),superior to the reported NH3 sensors based on 2D materials,and a positive temperature coefficient of resistance as high as 15%–20%/℃.Bending-invariant performance and high reliability are also demonstrated in flexible versions of sensors.Our work provides a new strategy of lithography-free processing of novel TMD-TMO heterostructures towards high-performance sensors,showing great potential in the applications of future portable and wearable electronics. 展开更多
关键词 two-dimensional heterostructure niobium disulfide niobium oxide laser patterning sensor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部