The ability to navigate long distances is essential for many animals to locate shelter,food,and breeding grounds.Magnetic sense has evolved in various migratory and homing species to orient them based on the geomagnet...The ability to navigate long distances is essential for many animals to locate shelter,food,and breeding grounds.Magnetic sense has evolved in various migratory and homing species to orient them based on the geomagnetic field.A highly conserved ironsulfur cluster assembly protein IscA is proposed as an animal magnetoreceptor(MagR).Iron-sulfur cluster binding is also suggested to play an essential role in MagR magnetism and is thus critical in animal magnetoreception.In the current study,we provide evidence for distinct iron binding and iron-sulfur cluster binding in MagR in pigeons,an avian species that relies on the geomagnetic field for navigation and homing.Pigeon MagR showed significantly higher total iron content from both iron-and ironsulfur binding.Y65 in pigeon MagR was shown to directly mediate mononuclear iron binding,and its mutation abolished iron-binding capacity of the protein.Surprisingly,both iron binding and iron-sulfur binding demonstrated synergistic effects,and thus appear to be integral and indispensable to pigeon MagR magnetism.These results not only extend our current understanding of the origin and complexity of MagR magnetism,but also imply a possible molecular explanation for the huge diversity in animal magnetoreception.展开更多
Magnetotactic bacteria(MTB)intact cells have been applied in magnetic hyperthermia therapy of tumor,showing great efficiency in heating for tumor cell inhibition.However,the detailed magnetic hyperthermia properties a...Magnetotactic bacteria(MTB)intact cells have been applied in magnetic hyperthermia therapy of tumor,showing great efficiency in heating for tumor cell inhibition.However,the detailed magnetic hyperthermia properties and optimum heat production conditions of MTB cells are still poorly understood due to lack of standard measuring equipment.The specific absorption rate(SAR)of MTB cells is often measured by home-made equipment at a limited frequency and magnetic field amplitude.In this study,we have used a commercial standard system to implement a comprehensive study of the hyperthermic response of Magnetospirillum gryphiswaldense MSR-1 strain under 7 frequencies of 144-764 kHz,and 8 field amplitudes between 10 and 45 kA/m.The measurement results prove that the SAR of MTB cells increases with magnetic field frequency and amplitude within a certain range.In combination with the magnetic measurements,it is determined that the magnetic hyperthermia mechanism of MTB mainly follows the principle of hysteresis loss,and the heat efficiency of MTB cells in alternating magnetic field are mainly aff ected by three parameters of hysteresis loop,saturation magnetisation,saturation remanent magnetisation,and coercivity.Thus when we culture MTB in LA-2 medium containing sodium nitrate as source of nitrogen,the SAR of MTB LA-2 cells with magnetosomes arranged in chains can be as high as 4925.6 W/g(in this work,all SARs are calculated with iron mass)under 764 kHz and 30 kA/m,which is 7.5 times than current commercial magnetic particles within similar size range.展开更多
基金supported by the National Natural Science Foundation of China(31640001 to C.X.,U21A20148 to X.Z.and C.X.)the Presidential Foundation of Hefei Institutes of Physical Science,Chinese Academy of Sciences(Y96XC11131,E26CCG27,and E26CCD15 to C.X.)。
文摘The ability to navigate long distances is essential for many animals to locate shelter,food,and breeding grounds.Magnetic sense has evolved in various migratory and homing species to orient them based on the geomagnetic field.A highly conserved ironsulfur cluster assembly protein IscA is proposed as an animal magnetoreceptor(MagR).Iron-sulfur cluster binding is also suggested to play an essential role in MagR magnetism and is thus critical in animal magnetoreception.In the current study,we provide evidence for distinct iron binding and iron-sulfur cluster binding in MagR in pigeons,an avian species that relies on the geomagnetic field for navigation and homing.Pigeon MagR showed significantly higher total iron content from both iron-and ironsulfur binding.Y65 in pigeon MagR was shown to directly mediate mononuclear iron binding,and its mutation abolished iron-binding capacity of the protein.Surprisingly,both iron binding and iron-sulfur binding demonstrated synergistic effects,and thus appear to be integral and indispensable to pigeon MagR magnetism.These results not only extend our current understanding of the origin and complexity of MagR magnetism,but also imply a possible molecular explanation for the huge diversity in animal magnetoreception.
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB41010403)the National Natural Science Foundation of China(Nos.41804070,41774076,41621004)+2 种基金the Key Program of Chinese Academy of Sciences(No.QYZDJ-SSWDQC024)the Key Research Program of the Institute of Geology and Geophysics,CAS(No.IGGCAS-201903)the PetroChina Innovation Foundation(No.2020D-5007-0105)。
文摘Magnetotactic bacteria(MTB)intact cells have been applied in magnetic hyperthermia therapy of tumor,showing great efficiency in heating for tumor cell inhibition.However,the detailed magnetic hyperthermia properties and optimum heat production conditions of MTB cells are still poorly understood due to lack of standard measuring equipment.The specific absorption rate(SAR)of MTB cells is often measured by home-made equipment at a limited frequency and magnetic field amplitude.In this study,we have used a commercial standard system to implement a comprehensive study of the hyperthermic response of Magnetospirillum gryphiswaldense MSR-1 strain under 7 frequencies of 144-764 kHz,and 8 field amplitudes between 10 and 45 kA/m.The measurement results prove that the SAR of MTB cells increases with magnetic field frequency and amplitude within a certain range.In combination with the magnetic measurements,it is determined that the magnetic hyperthermia mechanism of MTB mainly follows the principle of hysteresis loss,and the heat efficiency of MTB cells in alternating magnetic field are mainly aff ected by three parameters of hysteresis loop,saturation magnetisation,saturation remanent magnetisation,and coercivity.Thus when we culture MTB in LA-2 medium containing sodium nitrate as source of nitrogen,the SAR of MTB LA-2 cells with magnetosomes arranged in chains can be as high as 4925.6 W/g(in this work,all SARs are calculated with iron mass)under 764 kHz and 30 kA/m,which is 7.5 times than current commercial magnetic particles within similar size range.