Microbial fuel cells(MFCs)employing Pseudomonas putida B6-2(ATCC BAA-2545)as an exoelectrogen have been developed to harness energy from various conventional substrates,such as acetate,lactate,glucose,and fructose.Owi...Microbial fuel cells(MFCs)employing Pseudomonas putida B6-2(ATCC BAA-2545)as an exoelectrogen have been developed to harness energy from various conventional substrates,such as acetate,lactate,glucose,and fructose.Owing to its metabolic versatility,P.putida B6-2 demonstrates adaptable growth rates on diverse,cost-effective carbon sources within MFCs,exhibiting distinct energy production characteristics.Notably,the anode chamber’s pH rises with carboxylates’(acetate and lactate)consumption and decreases with carbohydrates’(glucose and fructose)utilization.The MFC utilizing fructose as a substrate achieved the highest power density at 411 mW m^(−2).Initial analysis revealed that P.putida B6-2 forms biofilms covered with nanowires,contributing to bioelectricity generation.These microbial nanowires are likely key players in direct extracellular electron transport through physical contact.This study established a robust foundation for producing valuable compounds and bioenergy from common substrates in bioelectrochemical systems(BESs)utilizing P.putida as an exoelectrogen.展开更多
基金supported by grants from National Natural Science Foundation of China (32070097 and 91951202)National Key Research and Development Program of China (2019YFA0904800).
文摘Microbial fuel cells(MFCs)employing Pseudomonas putida B6-2(ATCC BAA-2545)as an exoelectrogen have been developed to harness energy from various conventional substrates,such as acetate,lactate,glucose,and fructose.Owing to its metabolic versatility,P.putida B6-2 demonstrates adaptable growth rates on diverse,cost-effective carbon sources within MFCs,exhibiting distinct energy production characteristics.Notably,the anode chamber’s pH rises with carboxylates’(acetate and lactate)consumption and decreases with carbohydrates’(glucose and fructose)utilization.The MFC utilizing fructose as a substrate achieved the highest power density at 411 mW m^(−2).Initial analysis revealed that P.putida B6-2 forms biofilms covered with nanowires,contributing to bioelectricity generation.These microbial nanowires are likely key players in direct extracellular electron transport through physical contact.This study established a robust foundation for producing valuable compounds and bioenergy from common substrates in bioelectrochemical systems(BESs)utilizing P.putida as an exoelectrogen.