The combination of excellent thermal stability and outstanding electrical performance is of great sig-nificance for piezoelectric ceramics.Herein,we have prepared 0.11Pb(In_(0.5)Nb_(0.5))O_(3)-0.89Pb(Hf_(0.47)Ti_(0.53...The combination of excellent thermal stability and outstanding electrical performance is of great sig-nificance for piezoelectric ceramics.Herein,we have prepared 0.11Pb(In_(0.5)Nb_(0.5))O_(3)-0.89Pb(Hf_(0.47)Ti_(0.53))O_(3)-Sb_(2)O_(5)(PIN-PHT-x Sb)ceramics by solid-phase method and investigated the effect of oxygen octahedral lattice distortion on microstructure and macroscopic electrical properties.The distortion index of oxygen octahedra is studied by Rietveld refinement,showing that optimal octahedral distortion can soften B-O repulsion,disrupt long-range ordered ferroelectric domains,and enhance local heterogeneities,signifi-cantly increasing piezoelectric properties.Moreover,outstanding thermal stability and ultrahigh piezo-electric response of PIN-PHT-1.2Sb ceramics are realized under the synergistic influence of octahedral distortion,excellent density,and large grain size.Compared with PIN-PHT ceramics,PIN-PHT-1.2Sb ce-ramics exhibit ultrahigh piezoelectric responses(d_(33)=706 pC/N,k_(p)=0.68,ε_(r)=3244),a high Curie temperature(T C)of 300℃,excellent thermal stability,and anti-fatigue properties.展开更多
基金The authors would like to acknowledge the support of the National Ceramic Industry Design Institute of China(No.NICID2022Z02)the Instrumental Analysis Center of Xidian Uni-versity for providing test equipment,and also acknowledge the fi-nancial support of the Key Research and Development Program of Shaanxi(No.2022GY-184).
文摘The combination of excellent thermal stability and outstanding electrical performance is of great sig-nificance for piezoelectric ceramics.Herein,we have prepared 0.11Pb(In_(0.5)Nb_(0.5))O_(3)-0.89Pb(Hf_(0.47)Ti_(0.53))O_(3)-Sb_(2)O_(5)(PIN-PHT-x Sb)ceramics by solid-phase method and investigated the effect of oxygen octahedral lattice distortion on microstructure and macroscopic electrical properties.The distortion index of oxygen octahedra is studied by Rietveld refinement,showing that optimal octahedral distortion can soften B-O repulsion,disrupt long-range ordered ferroelectric domains,and enhance local heterogeneities,signifi-cantly increasing piezoelectric properties.Moreover,outstanding thermal stability and ultrahigh piezo-electric response of PIN-PHT-1.2Sb ceramics are realized under the synergistic influence of octahedral distortion,excellent density,and large grain size.Compared with PIN-PHT ceramics,PIN-PHT-1.2Sb ce-ramics exhibit ultrahigh piezoelectric responses(d_(33)=706 pC/N,k_(p)=0.68,ε_(r)=3244),a high Curie temperature(T C)of 300℃,excellent thermal stability,and anti-fatigue properties.