期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Preparation of Anisotropic MnO2 Nanocatalysts for Selective Oxidation of Benzyl Alcohol and 5-Hydroxymethylfurfural 被引量:1
1
作者 huanlin wang Yu Song +4 位作者 Xuan Liu Shiyu Lu Chunmei Zhou Yuguang Jin Yanhui Yang 《Transactions of Tianjin University》 EI CAS 2020年第5期382-390,共9页
Anisotropic MnO2 nanostructures,includingα-phase nanowire,α-phase nanorod,δ-phase nanosheet,α+δ-phase nanowire,and amorphous fl occule,were synthesized by a simple hydrothermal method through adjusting the pH of ... Anisotropic MnO2 nanostructures,includingα-phase nanowire,α-phase nanorod,δ-phase nanosheet,α+δ-phase nanowire,and amorphous fl occule,were synthesized by a simple hydrothermal method through adjusting the pH of the precursor solution and using diff erent counterions.The catalytic properties of the as-synthesized MnO2 nanomaterials in the selective oxidation of benzyl alcohol(BA)and 5-hydroxymethylfurfural(HMF)were evaluated.The eff ects of micromorphology,phase structure,and redox state on the catalytic activity of MnO2 nanomaterials were investigated.The results showed that the intrinsic catalytic oxidation activity was mainly infl uenced by the unique anisotropic structure and surface chemical property of MnO2.With one-dimensional and 2D structures exposing highly active surfaces,unique crystal forms,and high oxidation state of Mn,the intrinsic activities for MnO2 catalysts synthesized in pH 1,5,and 10 solutions(denoted as MnO2-pH1,MnO2-pH5,and MnO2-pH10,respectively)were twice higher than those of other MnO2 catalysts in oxidation of BA and HMF.With a moderate aspect ratio,theα+δnanowire of MnO2-pH10 exhibited the highest average oxidation state,most abundant active sites,and the best catalytic oxidation activity. 展开更多
关键词 Manganese dioxide Anisotropic structure Catalytic oxidation Benzyl alcohol 5-HYDROXYMETHYLFURFURAL
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部