期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Constructing Carbon Nanobubbles with Boron Doping as Advanced Anode for Realizing Unprecedently Ultrafast Potassium Ion Storage
1
作者 huanyu liang Zining Sun +7 位作者 Mingrui Zhang Wei Hu Jing Shi Jingwei Chen Weiqian Tian Minghua Huang Jingyi Wu Huanlei Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期248-257,共10页
Carbonaceous material with favorable K^(+)intercalation feature is considered as a compelling anode for potassium-ion batteries(PIBs).However,the inferior rate performance and cycling stability impede their large-scal... Carbonaceous material with favorable K^(+)intercalation feature is considered as a compelling anode for potassium-ion batteries(PIBs).However,the inferior rate performance and cycling stability impede their large-scale application.Here,a facile template method is utilized to synthesize boron doping carbon nanobubbles(BCNBs).The incorporation of boron into the carbon structure introduces abundant defective sites and improves conductivity,facilitating both the intercalation-controlled and capacitivecontrolled capacities.Moreover,theoretical calculation proves that boron doping can effectively improve the conductivity and facilitate electrochemical reversibility in PIBs.Correspondingly,the designed BCNBs anode delivers a high specific capacity(464 mAh g^(-1)at 0.05 A g^(-1))with an extraordinary rate performance(85.7 mAh g^(-1)at 50 A g^(-1)),and retains a considerable capacity retention(95.2%relative to the 100th charge after 2000 cycles).Besides,the strategy of pre-forming stable artificial inorganic solid electrolyte interface effectively realizes high initial coulombic efficiency of 79.0%for BCNBs.Impressively,a dual-carbon potassium-ion capacitor coupling BCNBs anode displays a high energy density(177.8 Wh kg^(-1)).This work not only shows great potential for utilizing heteroatom-doping strategy to boost the potassium ion storage but also paves the way for designing high-energy/power storage devices. 展开更多
关键词 high electrical conductivity potassium ion batteries potassium ion storage superior reversibility
下载PDF
Dendrite-structured FeF_(2) consisting of closely linked nanoparticles as cathode for high-performance lithium-ion capacitors 被引量:3
2
作者 huanyu liang Zhengqiang Hu +7 位作者 Zhongchen Zhao Dong Chen Hao Zhang Huaizhi Wang Xia Wang Qiang Li Xiangxin Guo Hongsen Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期517-523,共7页
Lithium-ion capacitors(LICs)are regarded as a good choice for next-generation energy storage devices,which are expected to exhibit high energy densities,high power densities,and ultra-long cycling stability.Neverthele... Lithium-ion capacitors(LICs)are regarded as a good choice for next-generation energy storage devices,which are expected to exhibit high energy densities,high power densities,and ultra-long cycling stability.Nevertheless,only a few battery-type cathode materials with limited kinetic properties can be employed in LICs,and their electrochemical properties need to be optimized urgently.Here,we exploit a new dendrite-structured FeF_(2) consisting of closely linked primary nanoparticles using a facile solvothermal method combined with the subsequent annealing treatment.This particular architecture has favorable transport pathways for both lithium ions and electrons and exhibits an ultrafast chargedischarge capability with high reversible capacities.Furthermore,a well-designed LIC employing the prepared dendrite-structured FeF_(2) as the battery-type cathode and commercialized activated carbon(AC)as supercapacitor-type anode was constructed in an organic electrolyte containing Li ions.The LIC operates at an optimal voltage range of 1.1-3.8 V and shows a maximum high energy density of 152 W h kg^(-1) and a high power density of 4900 W kg^(-1) based on the total mass of cathode and anode.Long-term cycling stability(85%capacity retention after 2000 cycles)was achieved at 1 A g^(-1).This work suggests that the dendrite-structured FeF_(2) is a prime candidate for high-performance LICs and accelerates the development of hybrid ion capacitor devices. 展开更多
关键词 Dendrite-structured FeF_(2) Cathode materials Lithium-ion capacitors High energy densities
下载PDF
Mechanistic understanding of the charge storage processes in FeF_(2) aggregates assembled with cylindrical nanoparticles as a cathode material for lithium-ion batteries by in situ magnetometry
3
作者 Zhengqiang Hu Fengling Zhang +13 位作者 huanyu liang Hao Zhang Huaizhi Wang Tiansheng Wang Renbin Liu Jie Liu Yadong Li Xiaotong Dong Lianyu Bao Zhuan liang Yaqun Wang Shishen Yan Qiang Li Hongsen Li 《Carbon Energy》 SCIE CAS 2022年第6期1011-1020,共10页
Transition metal fluorides(TMFs)cathode materials have shown extraordinary promises for electrochemical energy storage,but the understanding of their electrochemical reaction mechanisms is still a matter of debate due... Transition metal fluorides(TMFs)cathode materials have shown extraordinary promises for electrochemical energy storage,but the understanding of their electrochemical reaction mechanisms is still a matter of debate due to the complicated and continuous changing in the battery internal environment.Here,we design a novel iron fluoride(FeF_(2))aggregate assembled with cylindrical nanoparticles as cathode material to build FeF_(2) lithium-ion batteries(LIBs)and employ advanced in situ magnetometry to detect their intrinsic electronic structure during cycling in real time.The results show that FeF_(2) cannot be involved in complete conversion reactions when the FeF_(2) LIBs operate between the conventional voltage range of 1.0–4.0 V,and that the corresponding conversion ratio of FeF_(2) can be further estimated.Importantly,we first demonstrate that the spin-polarized surface capacitance exists in the FeF_(2) cathode by monitoring the magnetic responses over various voltage ranges.The research presents an original and insightful method to examine the conversion mechanism of TMFs and significantly provides an important reference for the future artificial design of energy systems based on spinpolarized surface capacitance. 展开更多
关键词 charge storage mechanism FeF_(2)cathode materials in situ magnetometry lithium-ion batteries
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部