期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Photosensitizer Nanoparticles Boost Photodynamic Therapy for Pancreatic Cancer Treatment 被引量:3
1
作者 huanyu yang Renfa Liu +2 位作者 Yunxue Xu Linxue Qian Zhifei Dai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第2期246-261,共16页
Patients with pancreatic cancer(PCa)have a poor prognosis apart from the few suitable for surgery.Photodynamic therapy(PDT)is a minimally invasive treatment modality whose efficacy and safety in treating unresectable ... Patients with pancreatic cancer(PCa)have a poor prognosis apart from the few suitable for surgery.Photodynamic therapy(PDT)is a minimally invasive treatment modality whose efficacy and safety in treating unresectable localized PCa have been corroborated in clinic.Yet,it suffers from certain limitations during clinical exploitation,including insufficient photosensitizers(PSs)delivery,tumor-oxygenation dependency,and treatment escape of aggressive tumors.To overcome these obstacles,an increasing number of researchers are currently on a quest to develop photosensitizer nanoparticles(NPs)by the use of a variety of nanocarrier systems to improve cellular uptake and biodistribution of photosensitizers.Encapsulation of PSs with NPs endows them significantly higher accumulation within PCa tumors due to the increased solubility and stability in blood circulation.A number of approaches have been explored to produce NPs co-delivering multi-agents affording PDT-based synergistic therapies for improved response rates and durability of response after treatment.This review provides an overview of available data regarding the design,methodology,and oncological outcome of the innovative NPs-based PDT of PCa. 展开更多
关键词 Photodynamic therapy PHOTOSENSITIZER NANOPARTICLE Pancreatic cancer Combined therapy
下载PDF
Photodynamic eradication of intratumoral microbiota with bacteria-targeted micelles overcomes gemcitabine resistance of pancreatic cancer
2
作者 Renfa Liu huanyu yang +5 位作者 Shuai Qu Peipei yang Xin Zhi Yunxue Xu Zhifei Dai Linxue Qian 《Aggregate》 EI CAS 2024年第1期377-384,共8页
Increasing evidence suggests that intratumoral microbiota plays a pivotal role in tumor progression,immunosurveillance,metastasis,and chemosensitivity.Particularly,in pancreatic ductal adenocarcinoma,tumor-resident Ga... Increasing evidence suggests that intratumoral microbiota plays a pivotal role in tumor progression,immunosurveillance,metastasis,and chemosensitivity.Particularly,in pancreatic ductal adenocarcinoma,tumor-resident Gammaproteobacteria could transform the chemotherapeutic drug gemcitabine(Gem)into its inactive form,thus rendering chemotherapy ineffective.Herein,a strategy for selectively eradicating intratumoral bacteria was described for overcoming Gem resistance in a pancreatic cancer animal model.An antimicrobial peptide was linked with photosensitizer through a poly(ethylene glycol)chain,which can self-assemble into micelles with a diameter of∼20 nm.The micelles could efficiently kill bacteria under light irradiation by inducing membrane depolarization,thereby inhibiting Gem metabolism.In a bacteria-resident pancreatic cancer animal model,the selective photodynamic eradication of intratumoral bacteria was demonstrated to efficiently reverse Gem resistance.This research highlights antibacterial photodynamic therapy as a promising adjuvant strategy for cancer therapy by modulating intratumoral microbiota. 展开更多
关键词 antimicrobial peptide gemcitabine resistance intratumoral microbiota pancreatic ductal adenocarcinoma photodynamic antibacterial therapy
原文传递
A novel smart steel strand based on optical-electrical co-sensing for full-process and full-scale monitoring of prestressing concrete structures
3
作者 huanyu yang Zhi Zhou Jinping Ou 《International Journal of Smart and Nano Materials》 SCIE EI 2023年第3期337-368,共32页
As the main load bearing component,the steel strand has a significant impact on the safety of civil infrastructure.Real-time monitoring of steel strand stress distribution throughout the damage process is an impor-tan... As the main load bearing component,the steel strand has a significant impact on the safety of civil infrastructure.Real-time monitoring of steel strand stress distribution throughout the damage process is an impor-tant aspect of civil infrastructure health assessment.Hence,this study proposes an optical-electrical co-sensing(OECS)smart steel strand with the DOFS and CCFPI embedded in.It can simultaneously measure small strains in the initial damage phase with high accuracy and obtain information in the large deformation phase with relatively low precision.Several experiments were carried out to test its sensing performance.It shows both DOFS and CCFPI have good linearity,repeatability and hysteresis.In comparison to DOFS,CCFPI has a relatively lower accuracy and resolution,but a large enough measurement range to tolerate the large strain in the event of a steel strand failure.To verify the reliability of the proposed smart steel strand in real structures,the strand strain distribution in the full damage process of bonded prestressed beams under four-point bending loading was monitored using the smart steel strand as a prestressing tendon.The strain measured by the OECS steel strand is shown to reflect the deformation and stiffness variation of prestressed beams under different load. 展开更多
关键词 Distributed optical fiber sensor(DOFS) Coaxial cable fabry–perot interferometer(CCFPI) Smart steel strand Prestress monitoring Optical-electrical co-sensing
原文传递
Development and sensing performance study of a smart CFRP cable assembled by multi-group anchorage units
4
作者 Lian Shao huanyu yang +1 位作者 Jinping Ou Zhi Zhou 《International Journal of Smart and Nano Materials》 SCIE EI 2023年第3期286-302,共17页
Carbon fiber reinforced polymer(CFRP)can be applied for bridge cables due to its excellent properties.As the important load-bearing structural component,real-time force monitoring of the CFRP cable is required.This pa... Carbon fiber reinforced polymer(CFRP)can be applied for bridge cables due to its excellent properties.As the important load-bearing structural component,real-time force monitoring of the CFRP cable is required.This paper presents a new smart CFRP cable that combines the self-sensing rods with embedded sensors and the anchorage system using extrusion technology.By embedding optical fiber(OF)and coaxial cable Fabry-Perot interferometer(CCFPI)into CFRP rods respectively,two types of self-sensing rods(CFRP-OF rod and CFRP-CCFPI rod)were fabricated.A new anchorage unit using an extrusion process was proposed as a basic component of smart CFRP cables.Anchorage units holding a CFRP-OF rod and a CFRP-CCFPI rod were tested to obtain their sensing and mechanical properties.Three ancho-rage units were assembled to form a smart CFRP cable with self-sensing functionality.A verification test was carried out to confirm the capabil-ity of monitoring the cable force.The test results demonstrate that the smart CFRP cable composed of multiple anchorage units has good potential in bridge engineering. 展开更多
关键词 Carbon fiber reinforced polymer smart cable sensor extrusion process bridge engineering
原文传递
Long-term performance of packaged fiber Bragg grating sensors for strain monitoring inside creep medium 被引量:1
5
作者 huanyu yang Ying Huang +1 位作者 Zhi Zhou Jinping Ou 《International Journal of Smart and Nano Materials》 SCIE EI 2022年第1期42-63,I0003,共23页
To investigate the long-term performance of the packaged fiber Bragg grating(FBG)sensors embedded in civil infrastructure for strain monitoring,in this paper,the influence of host matrix’s creep effect on the behavio... To investigate the long-term performance of the packaged fiber Bragg grating(FBG)sensors embedded in civil infrastructure for strain monitoring,in this paper,the influence of host matrix’s creep effect on the behavior of the FBG sensors was systematically studied through theoretical,numerical,and experimental analysis.A theoretical strain transfer analysis between the optic fiber,packaging layer,and host matrix to consider the creep effect of the host matrix was performed accordingly for long-term strain monitoring.Parametric studies were carried out using numerical analysis for FBG sensors packaged with glass fiber reinforced plastic(GFRP),also known as FBG-GFRP sensors in concrete,as an example.The results show that embedded in a creep medium,an acceptable long-term performance of packaged FBG sensors requires the packaging layer to have a minimum length and maximum thickness.Laboratory long-term creep tests using epoxy resin and concrete as host matrix for FBG-GFRP sensors also clearly demonstrated that the influence of creep effect cannot be ignored for strain measurements if the host matrix has a creep potential and the developed correction model performed well to reduce measurement errors of such sensors in creep medium. 展开更多
关键词 Fiber Bragg gratings(FBG)sensor strain transfer CREEP packaging layer epoxy resin concrete
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部