Hydrogen peroxide(H2O2)plays a significant role in regulating a variety of biological processes.Dysregulation of H2O2 can lead to various diseases.Although numerous fluorescent imaging probes for H2O2 have been report...Hydrogen peroxide(H2O2)plays a significant role in regulating a variety of biological processes.Dysregulation of H2O2 can lead to various diseases.Although numerous fluorescent imaging probes for H2O2 have been reported,the development of H2O2 ratiometric fluorescent probe with large Stokes shift remains rather limited.Such probes have shown distinct advantages,such as minimized interference from environment and improved signal-to noise ratio.In this work,we reported a new pyrene-based compound Py-VPB as H2O2 fluorescent probe in vitro.The probe demonstrated ratiometric detection behavior,large Stokes shift and large emission shift.In addition,the probe showed high sensitivity and selectivity towards H2O2 in vitro.Based on these excellent properties,we successfully applied Py-VPB to the visualization of exogenous and endogenous H2O2 in living cells.Cell imaging study also showed that our probe was localized in the mitochondria.We envision that the probe can provide a useful tool for unmasking the biological roles of mitochondrial H2O2 in living systems.展开更多
BACKGROUND: Neurotrophin-4 (NT-4) can promote neuronal growth, development, differentiation, maturation, and survival. NT-4 can also improve recovery and regeneration of injured neurons, but cannot pass through the...BACKGROUND: Neurotrophin-4 (NT-4) can promote neuronal growth, development, differentiation, maturation, and survival. NT-4 can also improve recovery and regeneration of injured neurons, but cannot pass through the blood-brain barrier, which limits its activity in the central nervous system. Delivering NT-4 into the central nervous system v/a cells or vectors may have therapeutic benefit. OBJECTIVE: To construct a recombinant vector with a human embryonic brain-derived NT-4 gene and pEGFP-NI. DESIGN, TIME AND SETTING: Neural genetic engineering experiment. The study was performed at the Neuroscience Institute of Kunming Medical College between October 2007 and March 2008. MATERIALS: The pEGFP-N1 plasmid vector was provided by Kunming Institute of Zoology, Chinese Academy of Sciences; embryonic brain tissues were provided by the First Affiliated Hospital of Kunming Medical College. TRIzol RNA extraction Kit was purchased from Sigma (USA), One Step RNA PCR Kit (AMV) etc. were from Takara (Dalian, China). METHODS: Total RNA was extracted from human embryonic brain tissues using Trizol. The agarose gel electrophoresis showed two bands: 18 S and 28 S, which were essential subunits of total RNA. The human NT-4 DNA was obtained via RT-PCR and inserted into the pEGFP-N1 vector using ligation and transformation reaction. MAIN OUTCOME MEASURES: The sequencing results of the DNA in the recombinant of NT-4- pEGFP-NI. RESULTS: The NT-4-pEGFP-N1 vector was sequence-verified and showed the expected molecular weight. CONCLUSION: The recombinant of NT-4-pEGFP-N1 was constructed successfully in vitro.展开更多
The stimuli-responsive polymers with upper critical solution temperatures(UCST) are highly attractive for drug delivery applications. However, the phase transition process of UCST polymer is usually characterized by t...The stimuli-responsive polymers with upper critical solution temperatures(UCST) are highly attractive for drug delivery applications. However, the phase transition process of UCST polymer is usually characterized by turbidity measurement and electron microscopy, which are significantly restricted by low sensitivity and static observation. In contrary, the fluorescence technique has significant advantages in terms of high sensitivity, easy operation, and dynamic observation. However, the conventional fluorophores suffer from the drawbacks of aggregation-caused quenching(ACQ) after being encapsulated by UCST polymers, which are not suitable for direct visualization of the phase transition process. To tackle this challenge, we herein developed a series of UCST polymers based on polyacrylamides decorated with bile acid and aggregation-induced emission(AIE)-active tetraphenylethene(TPE) groups, which can be used for direct fluorescence monitoring of the phase transition process. Moreover, the AIE-active UCST polymers can serve as drug carriers, which can not only monitor the drug release process under thermal stimuli, but also verify the drug release by fluorescence recovery after thermal stimuli. It is expected that the AIE-active UCST polymers with self-monitoring ability are promising for biomedical applications.展开更多
乙型肝炎病毒(hepatitis B virus,HBV)感染是全球肝病的重要原因之一,全球约有2.5亿患者感染HBV.其中,慢性HBV感染将导致肝纤维化(liver fibrosis),肝硬化(liver cirrhosis,LC)甚至肝细胞癌(hepatocellular carcinonma,HCC).HBV感染的...乙型肝炎病毒(hepatitis B virus,HBV)感染是全球肝病的重要原因之一,全球约有2.5亿患者感染HBV.其中,慢性HBV感染将导致肝纤维化(liver fibrosis),肝硬化(liver cirrhosis,LC)甚至肝细胞癌(hepatocellular carcinonma,HCC).HBV感染的临床进程可分为乙型肝炎e抗原(hepatitis B e antigen,HBeAg)阳性和HBeAg阴性两个阶段.而长期携带和难以清除的共价闭合环状DNA(covalently closed circular DNA,cccDNA)是两个阶段共同的固有特征.慢性HBV感染不能完全治愈,其致命原因是没有有效药物能彻底清除cccDNA;严重瓶颈是无理想的实验动物模型,尤其是针对HBeAg阴性cccDNA小鼠模型.目前,HBeAg阴性慢性乙型肝炎患者在全球范围内呈逐年上升趋势,本文就cccDNA的重要性、HBeAg基因结构及HBeAg转阴机理、HBeAg阴性cccDNA小鼠模型的研究现状与未来的应用前景进行简要述评.展开更多
基金This work was supported by the Science Technology and Innovation Committee of Shenzhen Municipality(JCYJ20180507181654823)the National Natural Science Foundation of China(21778044)and Sichuan Science and Technology Program(2018JY0360).
文摘Hydrogen peroxide(H2O2)plays a significant role in regulating a variety of biological processes.Dysregulation of H2O2 can lead to various diseases.Although numerous fluorescent imaging probes for H2O2 have been reported,the development of H2O2 ratiometric fluorescent probe with large Stokes shift remains rather limited.Such probes have shown distinct advantages,such as minimized interference from environment and improved signal-to noise ratio.In this work,we reported a new pyrene-based compound Py-VPB as H2O2 fluorescent probe in vitro.The probe demonstrated ratiometric detection behavior,large Stokes shift and large emission shift.In addition,the probe showed high sensitivity and selectivity towards H2O2 in vitro.Based on these excellent properties,we successfully applied Py-VPB to the visualization of exogenous and endogenous H2O2 in living cells.Cell imaging study also showed that our probe was localized in the mitochondria.We envision that the probe can provide a useful tool for unmasking the biological roles of mitochondrial H2O2 in living systems.
基金Supported by:the Scientific Research Foundation of Yunnan Provincial Education Academy,No.07C10388
文摘BACKGROUND: Neurotrophin-4 (NT-4) can promote neuronal growth, development, differentiation, maturation, and survival. NT-4 can also improve recovery and regeneration of injured neurons, but cannot pass through the blood-brain barrier, which limits its activity in the central nervous system. Delivering NT-4 into the central nervous system v/a cells or vectors may have therapeutic benefit. OBJECTIVE: To construct a recombinant vector with a human embryonic brain-derived NT-4 gene and pEGFP-NI. DESIGN, TIME AND SETTING: Neural genetic engineering experiment. The study was performed at the Neuroscience Institute of Kunming Medical College between October 2007 and March 2008. MATERIALS: The pEGFP-N1 plasmid vector was provided by Kunming Institute of Zoology, Chinese Academy of Sciences; embryonic brain tissues were provided by the First Affiliated Hospital of Kunming Medical College. TRIzol RNA extraction Kit was purchased from Sigma (USA), One Step RNA PCR Kit (AMV) etc. were from Takara (Dalian, China). METHODS: Total RNA was extracted from human embryonic brain tissues using Trizol. The agarose gel electrophoresis showed two bands: 18 S and 28 S, which were essential subunits of total RNA. The human NT-4 DNA was obtained via RT-PCR and inserted into the pEGFP-N1 vector using ligation and transformation reaction. MAIN OUTCOME MEASURES: The sequencing results of the DNA in the recombinant of NT-4- pEGFP-NI. RESULTS: The NT-4-pEGFP-N1 vector was sequence-verified and showed the expected molecular weight. CONCLUSION: The recombinant of NT-4-pEGFP-N1 was constructed successfully in vitro.
基金supported by the National Natural Science Foundation of China(21704026,21788102,51620105009,21877040,U1801252,21602063,22075087)the Natural Science Foundation of Guangdong Province,China(2019A1515011129)+4 种基金the Science and Technology Program of Guangzhou(201804020060,202007020002,201704030069,202002030229)Pearl River S&T Nova Program of Guangzhou(201806010152)Fundamental Research Funds for the Central Universities(2018JQ01)Foundation for Xinghua Scholar of South China University of TechnologyNational Key R&D Program of China(2017YFC1103400,2017YFC1105004,2018YFC0311103)。
文摘The stimuli-responsive polymers with upper critical solution temperatures(UCST) are highly attractive for drug delivery applications. However, the phase transition process of UCST polymer is usually characterized by turbidity measurement and electron microscopy, which are significantly restricted by low sensitivity and static observation. In contrary, the fluorescence technique has significant advantages in terms of high sensitivity, easy operation, and dynamic observation. However, the conventional fluorophores suffer from the drawbacks of aggregation-caused quenching(ACQ) after being encapsulated by UCST polymers, which are not suitable for direct visualization of the phase transition process. To tackle this challenge, we herein developed a series of UCST polymers based on polyacrylamides decorated with bile acid and aggregation-induced emission(AIE)-active tetraphenylethene(TPE) groups, which can be used for direct fluorescence monitoring of the phase transition process. Moreover, the AIE-active UCST polymers can serve as drug carriers, which can not only monitor the drug release process under thermal stimuli, but also verify the drug release by fluorescence recovery after thermal stimuli. It is expected that the AIE-active UCST polymers with self-monitoring ability are promising for biomedical applications.
文摘乙型肝炎病毒(hepatitis B virus,HBV)感染是全球肝病的重要原因之一,全球约有2.5亿患者感染HBV.其中,慢性HBV感染将导致肝纤维化(liver fibrosis),肝硬化(liver cirrhosis,LC)甚至肝细胞癌(hepatocellular carcinonma,HCC).HBV感染的临床进程可分为乙型肝炎e抗原(hepatitis B e antigen,HBeAg)阳性和HBeAg阴性两个阶段.而长期携带和难以清除的共价闭合环状DNA(covalently closed circular DNA,cccDNA)是两个阶段共同的固有特征.慢性HBV感染不能完全治愈,其致命原因是没有有效药物能彻底清除cccDNA;严重瓶颈是无理想的实验动物模型,尤其是针对HBeAg阴性cccDNA小鼠模型.目前,HBeAg阴性慢性乙型肝炎患者在全球范围内呈逐年上升趋势,本文就cccDNA的重要性、HBeAg基因结构及HBeAg转阴机理、HBeAg阴性cccDNA小鼠模型的研究现状与未来的应用前景进行简要述评.