Corynebacterium glutamicum is a promising chassis microorganism for the bioconversion of lignocellulosic biomass owing to its good tolerance and degradation of the inhibitors generated in lignocellulosic pretreatments...Corynebacterium glutamicum is a promising chassis microorganism for the bioconversion of lignocellulosic biomass owing to its good tolerance and degradation of the inhibitors generated in lignocellulosic pretreatments.Among the identified proteins encoded by genes within the C.glutamicum genome,nearly 400 are still functionally unknown.Based on previous transcriptome analysis,we found that the hypothetical protein gene cgl2215 was highly upregu-lated in response to phenol,ferulic acid,and vanillin stress.The cgl2215 deletion mutant was shown to be more sensitive than the parental strain to phenolic compounds as well as other environmental factors such as heat,ethanol,and oxidative stresses.Cgl2215 interacts with C.glutamicum mycoloyltransferase A(MytA)and enhances its in vitro esterase activity.Sensitivity assays of theΔmytA andΔcgl2215ΔmytA mutants in response to phenolic stress estab-lished that the role of Cgl2215 in phenolic tolerance was mediated by MytA.Furthermore,transmission electron microscopy(TEM)results showed that cgl2215 and mytA deletion both led to defects in the cell envelope structure of C.glutamicum,especially in the outer layer(OL)and electron-transparent layer(ETL).Collectively,these results indicate that Cgl2215 can enhance MytA activity and affect the cell envelope structure by directly interacting with MytA,thus playing an important role in resisting phenolic and other environmental stresses.展开更多
基金supported by the grant of National Key R&D Program of China(2021YFA0909600 to X.S.)the National Natural Science Foundation of China(31670053 to X.S.,32000022 to H.G.)+1 种基金China Postdoctoral Science Foundation(2019M663829 to H.G.)Northwest A&F University starting research fund(Z1090219039 to H.G.).
文摘Corynebacterium glutamicum is a promising chassis microorganism for the bioconversion of lignocellulosic biomass owing to its good tolerance and degradation of the inhibitors generated in lignocellulosic pretreatments.Among the identified proteins encoded by genes within the C.glutamicum genome,nearly 400 are still functionally unknown.Based on previous transcriptome analysis,we found that the hypothetical protein gene cgl2215 was highly upregu-lated in response to phenol,ferulic acid,and vanillin stress.The cgl2215 deletion mutant was shown to be more sensitive than the parental strain to phenolic compounds as well as other environmental factors such as heat,ethanol,and oxidative stresses.Cgl2215 interacts with C.glutamicum mycoloyltransferase A(MytA)and enhances its in vitro esterase activity.Sensitivity assays of theΔmytA andΔcgl2215ΔmytA mutants in response to phenolic stress estab-lished that the role of Cgl2215 in phenolic tolerance was mediated by MytA.Furthermore,transmission electron microscopy(TEM)results showed that cgl2215 and mytA deletion both led to defects in the cell envelope structure of C.glutamicum,especially in the outer layer(OL)and electron-transparent layer(ETL).Collectively,these results indicate that Cgl2215 can enhance MytA activity and affect the cell envelope structure by directly interacting with MytA,thus playing an important role in resisting phenolic and other environmental stresses.