Although extrusion-based three-dimensional(EB-3D)printing technique has been widely used in the complex fabrication of bone tissue-engineered scaffolds,a natural bone-like radial-gradient scaffold by this processing m...Although extrusion-based three-dimensional(EB-3D)printing technique has been widely used in the complex fabrication of bone tissue-engineered scaffolds,a natural bone-like radial-gradient scaffold by this processing method is of huge challenge and still unmet.Inspired by a typical fractal structure of Koch snowflake,for the first time,a fractal-like porous scaffold with a controllable hierarchical gradient in the radial direction is presented via fractal design and then implemented by EB-3D printing.This radial-gradient structure successfully mimics the radially gradual decrease in porosity of natural bone from cancellous bone to cortical bone.First,we create a design-to-fabrication workflow with embedding the graded data on basis of fractal design into digital processing to instruct the extrusion process of fractal-like scaffolds.Further,by a combination of suitable extruded inks,a series of bone-mimicking scaffolds with a 3-iteration fractal-like structure are fabricated to demonstrate their superiority,including radial porosity,mechanical property,and permeability.This study showcases a robust strategy to overcome the limitations of conventional EB-3D printers for the design and fabrication of functionally graded scaffolds,showing great potential in bone tissue engineering.展开更多
Although extrusion-based three-dimensional(EB-3D)printing technique has been widely used in the complex fabrication of bone tissue-engineered scaffolds,a natural bone-like radial-gradient scaffold by this processing m...Although extrusion-based three-dimensional(EB-3D)printing technique has been widely used in the complex fabrication of bone tissue-engineered scaffolds,a natural bone-like radial-gradient scaffold by this processing method is of huge challenge and still unmet.Inspired by a typical fractal structure of Koch snowflake,for the first time,a fractal-like porous scaffold with a controllable hierarchical gradient in the radial direction is presented via fractal design and then implemented by EB-3D printing.This radial-gradient structure successfully mimics the radially gradual decrease in porosity of natural bone from cancellous bone to cortical bone.First,we create a design-to-fabrication workflow with embedding the graded data on basis of fractal design into digital processing to instruct the extrusion process of fractal-like scaffolds.Further,by a combination of suitable extruded inks,a series of bone-mimicking scaffolds with a 3-iteration fractal-like structure are fabricated to demonstrate their superiority,including radial porosity,mechanical property,and permeability.This study showcases a robust strategy to overcome the limitations of conventional EB-3D printers for the design and fabrication of functionally graded scaffolds,showing great potential in bone tissue engineering.展开更多
基金supported by the National Key Research and Development Program of China(grant no.2018YFA0703100)the National Natural Science Foundation of China(grant nos.32122046,82072082,and 32000959)+2 种基金the Youth Innovation Promotion Association of CAS(grant no.2019350)the Guangdong Natural Science Foundation(grant no.2019A1515011277)the Shenzhen Fundamental Research Foundation(grant nos.JCYJ20180507182237428 and JCYJ20190812162809131).
文摘Although extrusion-based three-dimensional(EB-3D)printing technique has been widely used in the complex fabrication of bone tissue-engineered scaffolds,a natural bone-like radial-gradient scaffold by this processing method is of huge challenge and still unmet.Inspired by a typical fractal structure of Koch snowflake,for the first time,a fractal-like porous scaffold with a controllable hierarchical gradient in the radial direction is presented via fractal design and then implemented by EB-3D printing.This radial-gradient structure successfully mimics the radially gradual decrease in porosity of natural bone from cancellous bone to cortical bone.First,we create a design-to-fabrication workflow with embedding the graded data on basis of fractal design into digital processing to instruct the extrusion process of fractal-like scaffolds.Further,by a combination of suitable extruded inks,a series of bone-mimicking scaffolds with a 3-iteration fractal-like structure are fabricated to demonstrate their superiority,including radial porosity,mechanical property,and permeability.This study showcases a robust strategy to overcome the limitations of conventional EB-3D printers for the design and fabrication of functionally graded scaffolds,showing great potential in bone tissue engineering.
基金supported by the National Key Research and Development Program of China(grant no.2018YFA0703100)the National Natural Science Foundation of China(grant nos.32122046,82072082,and 32000959)+2 种基金the Youth Innovation Promotion Association of CAS(grant no.2019350)the Guangdong Natural Science Foundation(grant no.2019A1515011277)the Shenzhen Fundamental Research Foundation(grant nos.JCYJ20180507182237428 and JCYJ20190812162809131).
文摘Although extrusion-based three-dimensional(EB-3D)printing technique has been widely used in the complex fabrication of bone tissue-engineered scaffolds,a natural bone-like radial-gradient scaffold by this processing method is of huge challenge and still unmet.Inspired by a typical fractal structure of Koch snowflake,for the first time,a fractal-like porous scaffold with a controllable hierarchical gradient in the radial direction is presented via fractal design and then implemented by EB-3D printing.This radial-gradient structure successfully mimics the radially gradual decrease in porosity of natural bone from cancellous bone to cortical bone.First,we create a design-to-fabrication workflow with embedding the graded data on basis of fractal design into digital processing to instruct the extrusion process of fractal-like scaffolds.Further,by a combination of suitable extruded inks,a series of bone-mimicking scaffolds with a 3-iteration fractal-like structure are fabricated to demonstrate their superiority,including radial porosity,mechanical property,and permeability.This study showcases a robust strategy to overcome the limitations of conventional EB-3D printers for the design and fabrication of functionally graded scaffolds,showing great potential in bone tissue engineering.